cryo-EM structures of the E. coli replicative DNA polymerase reveal dynamic interactions with clamp, exonuclease and τ

  1. Rafael Fernández-Leiro
  2. Julian Conrad
  3. Sjors HW Scheres
  4. Meindert Hugo Lamers  Is a corresponding author
  1. MRC laboratory of Molecular Biology, United Kingdom
  2. Medical Research Council Laboratory of Molecular Biology, United Kingdom

Abstract

The replicative DNA polymerase PolIIIα from E. coli is a uniquely fast and processive enzyme. For its activity it relies on the DNA sliding clamp β, the proofreading exonuclease ε and the C-terminal domain of the clamp loader subunit τ. Due to the dynamic nature of the four-protein complex it has long been refractory to structural characterization. Here we present the 8 Å resolution cryo-electron microscopy structures of DNA-bound and DNA-free states of the PolIII-clamp-exonuclease-τc complex. The structures show how the polymerase is tethered to the DNA through multiple contacts with the clamp and exonuclease. A novel contact between the polymerase and clamp is made in the DNA bound state, facilitated by a large movement of the polymerase tail domain and τc. These structures provide crucial insights into the organization of the catalytic core of the replisome and form an important step towards determining the structure of the complete holoenzyme.

Article and author information

Author details

  1. Rafael Fernández-Leiro

    Structural Studies, MRC laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  2. Julian Conrad

    Structural Studies, MRC laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Sjors HW Scheres

    Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    Sjors HW Scheres, Reviewing editor, eLife.
  4. Meindert Hugo Lamers

    Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    mlamers@mrc-lmb.cam.ac.uk
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Stephen C Kowalczykowski, University of California, Davis, United States

Version history

  1. Received: August 25, 2015
  2. Accepted: October 23, 2015
  3. Accepted Manuscript published: October 24, 2015 (version 1)
  4. Version of Record published: December 9, 2015 (version 2)

Copyright

© 2015, Fernández-Leiro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,752
    views
  • 2,498
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rafael Fernández-Leiro
  2. Julian Conrad
  3. Sjors HW Scheres
  4. Meindert Hugo Lamers
(2015)
cryo-EM structures of the E. coli replicative DNA polymerase reveal dynamic interactions with clamp, exonuclease and τ
eLife 4:e11134.
https://doi.org/10.7554/eLife.11134

Share this article

https://doi.org/10.7554/eLife.11134

Further reading

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.