Sources of noise during accumulation of evidence in unrestrained and voluntarily head-restrained rats

  1. Ben B Scott
  2. Christine M Constantinople
  3. Jeffrey C Erlich
  4. David W Tank
  5. Carlos D Brody  Is a corresponding author
  1. Princeton University, United States
  2. New York University Shanghai, China

Abstract

Decision-making behavior is often characterized by substantial variability, but its source remains unclear. We developed a visual accumulation of evidence task designed to quantify sources of noise and to be performed during voluntary head restraint, enabling cellular resolution imaging in future studies. Rats accumulated discrete numbers of flashes presented to the left and right visual hemifields and indicated the side that had the greater number of flashes. Using a signal-detection theory-based model, we found that the standard deviation in their internal estimate of flash number scaled linearly with the number of flashes. This indicates a major source of noise that, surprisingly, is not consistent with the widely used 'drift-diffusion modeling' (DDM) approach but is instead closely related to proposed models of numerical cognition and counting. We speculate that this form of noise could be important in accumulation of evidence tasks generally.

Article and author information

Author details

  1. Ben B Scott

    Princeton Neuroscience Institute, Princeton University, New Jersey, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christine M Constantinople

    Princeton Neuroscience Institute, Princeton University, New Jersey, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeffrey C Erlich

    NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. David W Tank

    Princeton Neuroscience Institute, Princeton University, New Jersey, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Carlos D Brody

    Princeton Neuroscience Institute, Princeton University, New Jersey, United States
    For correspondence
    brody@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Naoshige Uchida, Harvard University, United States

Ethics

Animal experimentation: Animal use procedures were approved by the Princeton University Institutional Animal Care and Use Committee (IACUC) (Protocol #1837 and #1853). These procedures were carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

Version history

  1. Received: September 2, 2015
  2. Accepted: December 15, 2015
  3. Accepted Manuscript published: December 17, 2015 (version 1)
  4. Version of Record published: February 1, 2016 (version 2)

Copyright

© 2015, Scott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,245
    views
  • 1,099
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben B Scott
  2. Christine M Constantinople
  3. Jeffrey C Erlich
  4. David W Tank
  5. Carlos D Brody
(2015)
Sources of noise during accumulation of evidence in unrestrained and voluntarily head-restrained rats
eLife 4:e11308.
https://doi.org/10.7554/eLife.11308

Share this article

https://doi.org/10.7554/eLife.11308

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.