An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells

  1. Marius Walter
  2. Aurélie Teissandier
  3. Raquel Pérez-Palacios
  4. Déborah Bourc'his  Is a corresponding author
  1. Institut Curie, France
  2. Isntitut Curie, France

Abstract

DNA methylation is extensively remodeled during mammalian gametogenesis and embryogenesis. Most transposons become hypomethylated, raising the question of their regulation in the absence of DNA methylation. To reproduce a rapid and extensive demethylation, we subjected mouse ES cells to chemically defined hypomethylating culture conditions. Surprisingly, we observed two phases of transposon regulation. After an initial burst of de-repression, various transposon families were efficiently re-silenced. This was accompanied by a reconfiguration of the repressive chromatin landscape: while H3K9me3 was stable, H3K9me2 globally disappeared and H3K27me3 accumulated at transposons. Interestingly, we observed that H3K9me3 and H3K27me3 occupy different transposon families or different territories within the same family, defining three functional categories of adaptive chromatin responses to DNA methylation loss. Our work highlights that H3K9me3 and, most importantly, polycomb-mediated H3K27me3 chromatin pathways can secure the control of a large spectrum of transposons in periods of intense DNA methylation change, ensuring longstanding genome stability.

Article and author information

Author details

  1. Marius Walter

    Department of Genetics and Developmental Biology, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Aurélie Teissandier

    Department of Genetics and Developmental Biology, Isntitut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Raquel Pérez-Palacios

    Department of Genetics and Developmental Biology, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Déborah Bourc'his

    Department of Genetics and Developmental Biology, Institut Curie, Paris, France
    For correspondence
    deborah.bourchis@curie.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Anne C Ferguson-Smith, University of Cambridge, United Kingdom

Version history

  1. Received: September 7, 2015
  2. Accepted: January 27, 2016
  3. Accepted Manuscript published: January 27, 2016 (version 1)
  4. Version of Record published: February 16, 2016 (version 2)

Copyright

© 2016, Walter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,885
    views
  • 2,366
    downloads
  • 230
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marius Walter
  2. Aurélie Teissandier
  3. Raquel Pérez-Palacios
  4. Déborah Bourc'his
(2016)
An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells
eLife 5:e11418.
https://doi.org/10.7554/eLife.11418

Share this article

https://doi.org/10.7554/eLife.11418

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Parthasarathy Sampathkumar, Heekyung Jung ... Yang Li
    Research Article

    Molecules that facilitate targeted protein degradation (TPD) offer great promise as novel therapeutics. The human hepatic lectin asialoglycoprotein receptor (ASGR) is selectively expressed on hepatocytes. We have previously engineered an anti-ASGR1 antibody-mutant RSPO2 (RSPO2RA) fusion protein (called SWEETS) to drive tissue-specific degradation of ZNRF3/RNF43 E3 ubiquitin ligases, which achieved hepatocyte-specific enhanced Wnt signaling, proliferation, and restored liver function in mouse models, and an antibody–RSPO2RA fusion molecule is currently in human clinical trials. In the current study, we identified two new ASGR1- and ASGR1/2-specific antibodies, 8M24 and 8G8. High-resolution crystal structures of ASGR1:8M24 and ASGR2:8G8 complexes revealed that these antibodies bind to distinct epitopes on opposing sides of ASGR, away from the substrate-binding site. Both antibodies enhanced Wnt activity when assembled as SWEETS molecules with RSPO2RA through specific effects sequestering E3 ligases. In addition, 8M24-RSPO2RA and 8G8-RSPO2RA efficiently downregulate ASGR1 through TPD mechanisms. These results demonstrate the possibility of combining different therapeutic effects and degradation mechanisms in a single molecule.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article Updated

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.