An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability

  1. Judith Schütte
  2. Huange Wang
  3. Stella Antoniou
  4. Andrew Jarratt
  5. Nicola K Wilson
  6. Joey Riepsaame
  7. Fernando J Calero-Nieto
  8. Victoria Moignard
  9. Silvia Basilico
  10. Sarah J Kinston
  11. Rebecca L Hannah
  12. Mun Chiang Chan
  13. Sylvia T Nürnberg
  14. Willem H Ouwehand
  15. Nicola Bonzanni
  16. Marella FTR de Bruijn
  17. Berthold Göttgens  Is a corresponding author
  1. University Hospital Essen, Germany
  2. University of Cambridge, United Kingdom
  3. University of Oxford, United Kingdom
  4. Walter and Eliza Hall Institute of Medical Research, Australia
  5. University of Pennsylvania, United States
  6. VU University Amsterdam, Netherlands

Abstract

Transcription factor (TF) networks determine cell type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes.

Article and author information

Author details

  1. Judith Schütte

    Department of Haematology, University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Huange Wang

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Stella Antoniou

    MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew Jarratt

    Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicola K Wilson

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Joey Riepsaame

    MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Fernando J Calero-Nieto

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Victoria Moignard

    Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Silvia Basilico

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Sarah J Kinston

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Rebecca L Hannah

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Mun Chiang Chan

    MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Sylvia T Nürnberg

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Willem H Ouwehand

    Department of Haematology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Nicola Bonzanni

    IBIVU Centre for Integrative Bioinformatics, VU University Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  16. Marella FTR de Bruijn

    MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Berthold Göttgens

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    bg200@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Amy J Wagers, Harvard University, United States

Ethics

Animal experimentation: All mice were housed in microisolator cages and provided continuously with sterile food, water, and bedding. All mice were kept in specified pathogen-free conditions, and all procedures were performed according to the United Kingdom Home Office regulations under project licence 70/8406

Version history

  1. Received: September 9, 2015
  2. Accepted: February 12, 2016
  3. Accepted Manuscript published: February 22, 2016 (version 1)
  4. Version of Record published: March 10, 2016 (version 2)

Copyright

© 2016, Schütte et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,656
    views
  • 860
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Judith Schütte
  2. Huange Wang
  3. Stella Antoniou
  4. Andrew Jarratt
  5. Nicola K Wilson
  6. Joey Riepsaame
  7. Fernando J Calero-Nieto
  8. Victoria Moignard
  9. Silvia Basilico
  10. Sarah J Kinston
  11. Rebecca L Hannah
  12. Mun Chiang Chan
  13. Sylvia T Nürnberg
  14. Willem H Ouwehand
  15. Nicola Bonzanni
  16. Marella FTR de Bruijn
  17. Berthold Göttgens
(2016)
An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability
eLife 5:e11469.
https://doi.org/10.7554/eLife.11469

Share this article

https://doi.org/10.7554/eLife.11469

Further reading

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.

    1. Cell Biology
    2. Computational and Systems Biology
    Thomas Grandits, Christoph M Augustin ... Alexander Jung
    Research Article

    Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.