An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability

  1. Judith Schütte
  2. Huange Wang
  3. Stella Antoniou
  4. Andrew Jarratt
  5. Nicola K Wilson
  6. Joey Riepsaame
  7. Fernando J Calero-Nieto
  8. Victoria Moignard
  9. Silvia Basilico
  10. Sarah J Kinston
  11. Rebecca L Hannah
  12. Mun Chiang Chan
  13. Sylvia T Nürnberg
  14. Willem H Ouwehand
  15. Nicola Bonzanni
  16. Marella FTR de Bruijn
  17. Berthold Göttgens  Is a corresponding author
  1. University Hospital Essen, Germany
  2. University of Cambridge, United Kingdom
  3. University of Oxford, United Kingdom
  4. Walter and Eliza Hall Institute of Medical Research, Australia
  5. University of Pennsylvania, United States
  6. VU University Amsterdam, Netherlands

Abstract

Transcription factor (TF) networks determine cell type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes.

Article and author information

Author details

  1. Judith Schütte

    Department of Haematology, University Hospital Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Huange Wang

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Stella Antoniou

    MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew Jarratt

    Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicola K Wilson

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Joey Riepsaame

    MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Fernando J Calero-Nieto

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Victoria Moignard

    Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Silvia Basilico

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Sarah J Kinston

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Rebecca L Hannah

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Mun Chiang Chan

    MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Sylvia T Nürnberg

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Willem H Ouwehand

    Department of Haematology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Nicola Bonzanni

    IBIVU Centre for Integrative Bioinformatics, VU University Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  16. Marella FTR de Bruijn

    MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Berthold Göttgens

    Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    bg200@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All mice were housed in microisolator cages and provided continuously with sterile food, water, and bedding. All mice were kept in specified pathogen-free conditions, and all procedures were performed according to the United Kingdom Home Office regulations under project licence 70/8406

Copyright

© 2016, Schütte et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,731
    views
  • 868
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Judith Schütte
  2. Huange Wang
  3. Stella Antoniou
  4. Andrew Jarratt
  5. Nicola K Wilson
  6. Joey Riepsaame
  7. Fernando J Calero-Nieto
  8. Victoria Moignard
  9. Silvia Basilico
  10. Sarah J Kinston
  11. Rebecca L Hannah
  12. Mun Chiang Chan
  13. Sylvia T Nürnberg
  14. Willem H Ouwehand
  15. Nicola Bonzanni
  16. Marella FTR de Bruijn
  17. Berthold Göttgens
(2016)
An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability
eLife 5:e11469.
https://doi.org/10.7554/eLife.11469

Share this article

https://doi.org/10.7554/eLife.11469

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.