1. Cell Biology
Download icon

Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites

  1. Wei-ke Ji
  2. Anna L Hatch
  3. Ronald A Merrill
  4. Stefan Strack
  5. Henry N Higgs  Is a corresponding author
  1. Geisel School of Medicine at Dartmouth, United States
  2. The University of Iowa, United States
Research Article
  • Cited 116
  • Views 5,425
  • Annotations
Cite this article as: eLife 2015;4:e11553 doi: 10.7554/eLife.11553

Abstract

While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites.

Article and author information

Author details

  1. Wei-ke Ji

    Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna L Hatch

    Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ronald A Merrill

    Department of Pharmacology, The University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Strack

    Department of Pharmacology, The University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Henry N Higgs

    Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
    For correspondence
    henry.higgs@dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Pekka Lappalainen, University of Helsinki, Finland

Publication history

  1. Received: September 11, 2015
  2. Accepted: November 25, 2015
  3. Accepted Manuscript published: November 26, 2015 (version 1)
  4. Accepted Manuscript updated: November 30, 2015 (version 2)
  5. Version of Record published: February 3, 2016 (version 3)

Copyright

© 2015, Ji et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,425
    Page views
  • 1,563
    Downloads
  • 116
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Zherui Xiong et al.
    Tools and Resources Updated

    Protein interaction networks are crucial for complex cellular processes. However, the elucidation of protein interactions occurring within highly specialised cells and tissues is challenging. Here, we describe the development, and application, of a new method for proximity-dependent biotin labelling in whole zebrafish. Using a conditionally stabilised GFP-binding nanobody to target a biotin ligase to GFP-labelled proteins of interest, we show tissue-specific proteomic profiling using existing GFP-tagged transgenic zebrafish lines. We demonstrate the applicability of this approach, termed BLITZ (Biotin Labelling In Tagged Zebrafish), in diverse cell types such as neurons and vascular endothelial cells. We applied this methodology to identify interactors of caveolar coat protein, cavins, in skeletal muscle. Using this system, we defined specific interaction networks within in vivo muscle cells for the closely related but functionally distinct Cavin4 and Cavin1 proteins.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lorraine De Jesus Kim et al.
    Research Article

    The committed step of eukaryotic DNA replication occurs when the pairs of Mcm2-7 replicative helicases that license each replication origin are activated. Helicase activation requires the recruitment of Cdc45 and GINS to Mcm2-7, forming Cdc45-Mcm2-7-GINS complexes (CMGs). Using single-molecule biochemical assays to monitor CMG formation, we found that Cdc45 and GINS are recruited to loaded Mcm2-7 in two stages. Initially, Cdc45, GINS, and likely additional proteins are recruited to unstructured Mcm2-7 N-terminal tails in a Dbf4-dependent kinase (DDK)-dependent manner, forming Cdc45-tail-GINS intermediates (CtGs). DDK phosphorylation of multiple phosphorylation sites on the Mcm2‑7 tails modulates the number of CtGs formed per Mcm2-7. In a second, inefficient event, a subset of CtGs transfer their Cdc45 and GINS components to form CMGs. Importantly, higher CtG multiplicity increases the frequency of CMG formation. Our findings reveal molecular mechanisms sensitizing helicase activation to DDK levels with implications for control of replication origin efficiency and timing.