Glial and neuronal Semaphorin signaling instruct the development of a functional myotopic map for Drosophila walking

  1. Durafshan Sakeena Syed
  2. Swetha BM
  3. O Venkateswara Reddy
  4. Heinrich Reichert
  5. K VijayRaghavan  Is a corresponding author
  1. Tata Institute of Fundamental Research, India
  2. University of Basel, Switzerland

Abstract

Motoneurons developmentally acquire appropriate cellular architectures that ensure connections with postsynaptic muscles and presynaptic neurons. In Drosophila, leg motoneurons are organized as a myotopic map, where their dendritic domains represent the muscle field. Here we investigate mechanisms underlying development of aspects of this myotopic map, required for walking. A behavioral screen identified roles for Semaphorins (Sema) and Plexins (Plex) in walking behavior. Deciphering this phenotype, we show that PlexA/Sema1a mediates motoneuron axon branching in ways that differ in the proximal femur and distal tibia, based on motoneuronal birth order. Importantly, we show a novel role for glia in positioning dendrites of specific motoneurons; PlexB/Sema2a is required for dendritic positioning of late-born motoneurons but not early-born motoneurons. These findings indicate that communication within motoneurons and between glia and motoneurons, mediated by the combined action of different Plexin/Semaphorin signaling systems, are required for the formation of a functional myotopic map.

Article and author information

Author details

  1. Durafshan Sakeena Syed

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    No competing interests declared.
  2. Swetha BM

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    No competing interests declared.
  3. O Venkateswara Reddy

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    No competing interests declared.
  4. Heinrich Reichert

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  5. K VijayRaghavan

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    vijay@ncbs.res.in
    Competing interests
    K VijayRaghavan, Senior editor, eLife.

Copyright

© 2016, Syed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,689
    views
  • 545
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Durafshan Sakeena Syed
  2. Swetha BM
  3. O Venkateswara Reddy
  4. Heinrich Reichert
  5. K VijayRaghavan
(2016)
Glial and neuronal Semaphorin signaling instruct the development of a functional myotopic map for Drosophila walking
eLife 5:e11572.
https://doi.org/10.7554/eLife.11572

Share this article

https://doi.org/10.7554/eLife.11572