Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1

  1. Nikolai Hentze
  2. Laura Le Breton
  3. Jan Wiesner
  4. Georg Kempf
  5. Matthias P Mayer  Is a corresponding author
  1. AbbVie Deutschland GmbH &Co. KG, Germany
  2. Zentrum für Molekulare Biologie der Universität Heidelberg, Germany
  3. Universität Heidelberg, Germany

Abstract

The heat shock response is a universal homeostatic cell autonomous reaction of organisms to cope with adverse environmental conditions. In mammalian cells this response is mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic principle of Hsf1 activation we analyzed temperature-induced alterations in the conformational dynamics of Hsf1 by hydrogen exchange mass spectrometry. We found a temperature-dependent unfolding of Hsf1 in the regulatory region happening concomitant to tighter packing in the trimerization region. The transition to the active DNA binding-competent state occurred highly cooperative and was concentration dependent. Surprisingly, Hsp90, known to inhibit Hsf1 activation, lowered the midpoint temperature of trimerization and reduced cooperativity of the process thus widening the response window. Based on our data we propose a kinetic model of Hsf1 trimerization.

Article and author information

Author details

  1. Nikolai Hentze

    NBE Analytical R&D, AbbVie Deutschland GmbH &Co. KG, Ludwigshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Laura Le Breton

    Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jan Wiesner

    Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Georg Kempf

    Biochemiezentrum, Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthias P Mayer

    Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    For correspondence
    M.Mayer@zmbh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Hentze et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,177
    views
  • 1,164
    downloads
  • 125
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikolai Hentze
  2. Laura Le Breton
  3. Jan Wiesner
  4. Georg Kempf
  5. Matthias P Mayer
(2016)
Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1
eLife 5:e11576.
https://doi.org/10.7554/eLife.11576

Share this article

https://doi.org/10.7554/eLife.11576

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Jiale Zhou, Ding Zhao ... Zhanjun Li
    Research Article

    5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.