Allosteric modulation in monomers and oligomers of a G protein-coupled receptor

  1. Rabindra V Shivnaraine  Is a corresponding author
  2. Brendan Kelly
  3. Krishana S Sankar
  4. Dar'ya S Redka
  5. Yi Rang Han
  6. Fei Huang
  7. Gwendolynne Elmslie
  8. Daniel Pinto
  9. Yuchong Li
  10. Jonathan V Rocheleau
  11. Claudiu C Gradinaru
  12. John Ellis
  13. James W Wells
  1. Stanford University School of Medicine, United States
  2. Stanford University, United States
  3. University of Toronto, Canada
  4. Hershey Medical Center, United States

Abstract

The M2 muscarinic receptor is the prototypic model of allostery in GPCRs, yet the molecular and the supramolecular determinants of such effects are unknown. Monomers and oligomers of the M2 muscarinic receptor therefore have been compared to identify those allosteric properties that are gained in oligomers. Allosteric interactions were monitored by means of a FRET-based sensor of conformation at the allosteric site and in pharmacological assays involving mutants engineered to preclude intramolecular effects. Electrostatic, steric, and conformational determinants of allostery at the atomic level were examined in molecular dynamics simulations. Allosteric effects in monomers were exclusively negative and derived primarily from intramolecular electrostatic repulsion between the allosteric and orthosteric ligands. Allosteric effects in oligomers could be positive or negative, depending upon the allosteric-orthosteric pair, and they arose from interactions within and between the constituent protomers. The complex behavior of oligomers is characteristic of muscarinic receptors in myocardial preparations.

Article and author information

Author details

  1. Rabindra V Shivnaraine

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    rvshiv@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Brendan Kelly

    Department of Computer Science, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Krishana S Sankar

    Department of Physiology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Dar'ya S Redka

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Yi Rang Han

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Fei Huang

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Gwendolynne Elmslie

    Departments of Psychiatry and Pharmacology, Hershey Medical Center, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Daniel Pinto

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuchong Li

    Department of Physics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonathan V Rocheleau

    Department of Physiology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Claudiu C Gradinaru

    Department of Physics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. John Ellis

    Departments of Psychiatry and Pharmacology, Hershey Medical Center, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. James W Wells

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Shivnaraine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,410
    views
  • 601
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rabindra V Shivnaraine
  2. Brendan Kelly
  3. Krishana S Sankar
  4. Dar'ya S Redka
  5. Yi Rang Han
  6. Fei Huang
  7. Gwendolynne Elmslie
  8. Daniel Pinto
  9. Yuchong Li
  10. Jonathan V Rocheleau
  11. Claudiu C Gradinaru
  12. John Ellis
  13. James W Wells
(2016)
Allosteric modulation in monomers and oligomers of a G protein-coupled receptor
eLife 5:e11685.
https://doi.org/10.7554/eLife.11685

Share this article

https://doi.org/10.7554/eLife.11685

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.