The innate immune sensor IFI16 recognizes foreign DNA in the nucleus by scanning along the duplex
Abstract
The ability to recognize foreign double-stranded (ds)DNA of pathogenic origin in the intracellular environment is an essential defense mechanism of the human innate immune system. However, the molecular mechanisms underlying distinction between foreign DNA and host genomic material inside the nucleus are not understood. By combining biochemical assays and single-molecule techniques, we show that the nuclear innate immune sensor IFI16 one-dimensionally tracks long stretches of exposed foreign dsDNA to assemble into supramolecular signaling platforms. We also demonstrate that nucleosomes represent barriers that prevent IFI16 from targeting host DNA by directly interfering with these one-dimensional movements. This unique scanning-assisted assembly mechanism allows IFI16 to distinguish friend from foe and assemble into oligomers efficiently and selectively on foreign DNA.
Article and author information
Author details
Copyright
© 2015, Stratmann et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,207
- views
-
- 809
- downloads
-
- 70
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of major histocompatibility complex class I (MHC-I) and related molecules. Functionally, these receptor families are involved in the licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on an H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.
-
- Cancer Biology
- Immunology and Inflammation
In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.