Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice

  1. Damien Lanfray  Is a corresponding author
  2. Alexandre Caron
  3. Marie-Claude Roy
  4. Mathieu Laplante
  5. Fabrice Morin
  6. Jérôme Leprince
  7. Marie-Christine Tonon
  8. Denis Richard
  1. Université Laval, Canada
  2. Institut National de la Santé et de la Recherche Médicale, France

Abstract

Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway.

Article and author information

Author details

  1. Damien Lanfray

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    For correspondence
    damien.lanfray@criucpq.ulaval.ca
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandre Caron

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Marie-Claude Roy

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Mathieu Laplante

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabrice Morin

    Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jérôme Leprince

    Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Marie-Christine Tonon

    Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Denis Richard

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard D Palmiter, Howard Hughes Medical Institute, University of Washington, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in Canadian Guide for the Care and Use of Laboratory Animals. The protocol was approved by the Animal Ethic Committee (CPAUL) of the Laval University (Permit Number: #2013-019-3). All surgery was performed under Isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: September 20, 2015
  2. Accepted: February 14, 2016
  3. Accepted Manuscript published: February 15, 2016 (version 1)
  4. Version of Record published: March 23, 2016 (version 2)

Copyright

© 2016, Lanfray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,392
    views
  • 372
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Damien Lanfray
  2. Alexandre Caron
  3. Marie-Claude Roy
  4. Mathieu Laplante
  5. Fabrice Morin
  6. Jérôme Leprince
  7. Marie-Christine Tonon
  8. Denis Richard
(2016)
Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice
eLife 5:e11742.
https://doi.org/10.7554/eLife.11742

Share this article

https://doi.org/10.7554/eLife.11742

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.