Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice

  1. Damien Lanfray  Is a corresponding author
  2. Alexandre Caron
  3. Marie-Claude Roy
  4. Mathieu Laplante
  5. Fabrice Morin
  6. Jérôme Leprince
  7. Marie-Christine Tonon
  8. Denis Richard
  1. Université Laval, Canada
  2. Institut National de la Santé et de la Recherche Médicale, France

Abstract

Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway.

Article and author information

Author details

  1. Damien Lanfray

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    For correspondence
    damien.lanfray@criucpq.ulaval.ca
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandre Caron

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Marie-Claude Roy

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Mathieu Laplante

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabrice Morin

    Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jérôme Leprince

    Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Marie-Christine Tonon

    Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Denis Richard

    Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in Canadian Guide for the Care and Use of Laboratory Animals. The protocol was approved by the Animal Ethic Committee (CPAUL) of the Laval University (Permit Number: #2013-019-3). All surgery was performed under Isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Richard D Palmiter, Howard Hughes Medical Institute, University of Washington, United States

Publication history

  1. Received: September 20, 2015
  2. Accepted: February 14, 2016
  3. Accepted Manuscript published: February 15, 2016 (version 1)
  4. Version of Record published: March 23, 2016 (version 2)

Copyright

© 2016, Lanfray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,282
    Page views
  • 357
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Damien Lanfray
  2. Alexandre Caron
  3. Marie-Claude Roy
  4. Mathieu Laplante
  5. Fabrice Morin
  6. Jérôme Leprince
  7. Marie-Christine Tonon
  8. Denis Richard
(2016)
Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice
eLife 5:e11742.
https://doi.org/10.7554/eLife.11742

Further reading

    1. Cell Biology
    Meng Zhao, Niels Banhos Dannieskiold-Samsøe ... Katrin J Svensson
    Research Article

    The secreted protein Isthmin-1 (Ism1) mitigates diabetes by increasing adipocyte and skeletal muscle glucose uptake by activating the PI3K-Akt pathway. However, while both Ism1 and insulin converge on these common targets, Ism1 has distinct cellular actions suggesting divergence in downstream intracellular signaling pathways. To understand the biological complexity of Ism1 signaling, we performed phosphoproteomic analysis after acute exposure, revealing overlapping and distinct pathways of Ism1 and insulin. We identify a 53 % overlap between Ism1 and insulin signaling and Ism1-mediated phosphoproteome-wide alterations in ~ 450 proteins that are not shared with insulin. Interestingly, we find several unknown phosphorylation sites on proteins related to protein translation, mTOR pathway and, unexpectedly, muscle function in the Ism1 signaling network. Physiologically, Ism1 ablation in mice results in altered proteostasis, including lower muscle protein levels under fed and fasted conditions, reduced amino acid incorporation into proteins, and reduced phosphorylation of the key protein synthesis effectors Akt and downstream mTORC1 targets. As metabolic disorders such as diabetes are associated with accelerated loss of skeletal muscle protein content, these studies define a non-canonical mechanism by which this anti-diabetic circulating protein controls muscle biology.

    1. Cell Biology
    Jia Chen, Daniel St Johnston
    Research Article

    In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully-formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.