Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism

  1. Gianpaolo Rando
  2. Chek Kun Tan
  3. Nourhène Khaled
  4. Alexandra Montagner
  5. Nicolas Leuenberger
  6. Justine Bertrand-Michel
  7. Eeswari Paramalingam
  8. Hervé Guillou
  9. Walter Wahli  Is a corresponding author
  1. University of Lausanne, Swaziland
  2. Nanyang Technological University, Singapore
  3. INRA, Université de Toulouse, France
  4. University of Lausanne, Switzerland
  5. INSERM IFR 150 - Institut Fédératif de Recherche Bio-Médicale de Toulouse, France

Abstract

In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Gianpaolo Rando

    Center for Integrative Genomics, University of Lausanne, Lausanne, Swaziland
    Competing interests
    The authors declare that no competing interests exist.
  2. Chek Kun Tan

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Nourhène Khaled

    Center for Integrative Genomics, University of Lausanne, Lausanne, Swaziland
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra Montagner

    UMR 1331 TOXALIM Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicolas Leuenberger

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Justine Bertrand-Michel

    Institut Fédératif de Recherche Bio-Médicale de Toulouse, INSERM IFR 150 - Institut Fédératif de Recherche Bio-Médicale de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Eeswari Paramalingam

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Hervé Guillou

    UMR 1331 TOXALIM Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Walter Wahli

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    For correspondence
    walter.wahli@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5966-9089

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the institutional animal care and use committee (IACUC) protocol (#2013/SHS/866) approved by SingHealth, Singapore and the Vaud Cantonal Authority, Switzerland.

Copyright

© 2016, Rando et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,936
    views
  • 576
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.11853

Further reading

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.