Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism

  1. Gianpaolo Rando
  2. Chek Kun Tan
  3. Nourhène Khaled
  4. Alexandra Montagner
  5. Nicolas Leuenberger
  6. Justine Bertrand-Michel
  7. Eeswari Paramalingam
  8. Hervé Guillou
  9. Walter Wahli  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. Nanyang Technological University, Singapore
  3. INRA, Université de Toulouse, France
  4. IFR 150, INSERM, France

Abstract

In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Gianpaolo Rando

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Chek Kun Tan

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Nourhène Khaled

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra Montagner

    UMR 1331 TOXALIM Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicolas Leuenberger

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Justine Bertrand-Michel

    Institut Fédératif de Recherche Bio-Médicale de Toulouse, IFR 150, INSERM, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Eeswari Paramalingam

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Hervé Guillou

    UMR 1331 TOXALIM Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Walter Wahli

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    For correspondence
    walter.wahli@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5966-9089

Reviewing Editor

  1. K VijayRaghavan, Tata Institute of Fundamental Research, India

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the institutional animal care and use committee (IACUC) protocol (#2013/SHS/866) approved by SingHealth, Singapore and the Vaud Cantonal Authority, Switzerland.

Version history

  1. Received: September 25, 2015
  2. Accepted: June 30, 2016
  3. Accepted Manuscript published: July 1, 2016 (version 1)
  4. Accepted Manuscript updated: July 7, 2016 (version 2)
  5. Version of Record published: July 27, 2016 (version 3)

Copyright

© 2016, Rando et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,824
    Page views
  • 565
    Downloads
  • 37
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gianpaolo Rando
  2. Chek Kun Tan
  3. Nourhène Khaled
  4. Alexandra Montagner
  5. Nicolas Leuenberger
  6. Justine Bertrand-Michel
  7. Eeswari Paramalingam
  8. Hervé Guillou
  9. Walter Wahli
(2016)
Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism
eLife 5:e11853.
https://doi.org/10.7554/eLife.11853

Share this article

https://doi.org/10.7554/eLife.11853

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article Updated

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.