Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism

  1. Gianpaolo Rando
  2. Chek Kun Tan
  3. Nourhène Khaled
  4. Alexandra Montagner
  5. Nicolas Leuenberger
  6. Justine Bertrand-Michel
  7. Eeswari Paramalingam
  8. Hervé Guillou
  9. Walter Wahli  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. Nanyang Technological University, Singapore
  3. INRA, Université de Toulouse, France
  4. IFR 150, INSERM, France

Abstract

In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Gianpaolo Rando

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Chek Kun Tan

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Nourhène Khaled

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra Montagner

    UMR 1331 TOXALIM Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicolas Leuenberger

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Justine Bertrand-Michel

    Institut Fédératif de Recherche Bio-Médicale de Toulouse, IFR 150, INSERM, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Eeswari Paramalingam

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Hervé Guillou

    UMR 1331 TOXALIM Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Walter Wahli

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    For correspondence
    walter.wahli@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5966-9089

Reviewing Editor

  1. K VijayRaghavan, Tata Institute of Fundamental Research, India

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the institutional animal care and use committee (IACUC) protocol (#2013/SHS/866) approved by SingHealth, Singapore and the Vaud Cantonal Authority, Switzerland.

Version history

  1. Received: September 25, 2015
  2. Accepted: June 30, 2016
  3. Accepted Manuscript published: July 1, 2016 (version 1)
  4. Accepted Manuscript updated: July 7, 2016 (version 2)
  5. Version of Record published: July 27, 2016 (version 3)

Copyright

© 2016, Rando et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,879
    views
  • 572
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gianpaolo Rando
  2. Chek Kun Tan
  3. Nourhène Khaled
  4. Alexandra Montagner
  5. Nicolas Leuenberger
  6. Justine Bertrand-Michel
  7. Eeswari Paramalingam
  8. Hervé Guillou
  9. Walter Wahli
(2016)
Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism
eLife 5:e11853.
https://doi.org/10.7554/eLife.11853

Share this article

https://doi.org/10.7554/eLife.11853

Further reading

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.