Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism

  1. Gianpaolo Rando
  2. Chek Kun Tan
  3. Nourhène Khaled
  4. Alexandra Montagner
  5. Nicolas Leuenberger
  6. Justine Bertrand-Michel
  7. Eeswari Paramalingam
  8. Hervé Guillou
  9. Walter Wahli  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. Nanyang Technological University, Singapore
  3. INRA, Université de Toulouse, France
  4. IFR 150, INSERM, France

Abstract

In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Gianpaolo Rando

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Chek Kun Tan

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Nourhène Khaled

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra Montagner

    UMR 1331 TOXALIM Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicolas Leuenberger

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Justine Bertrand-Michel

    Institut Fédératif de Recherche Bio-Médicale de Toulouse, IFR 150, INSERM, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Eeswari Paramalingam

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Hervé Guillou

    UMR 1331 TOXALIM Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Walter Wahli

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    For correspondence
    walter.wahli@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5966-9089

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the institutional animal care and use committee (IACUC) protocol (#2013/SHS/866) approved by SingHealth, Singapore and the Vaud Cantonal Authority, Switzerland.

Copyright

© 2016, Rando et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,931
    views
  • 576
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gianpaolo Rando
  2. Chek Kun Tan
  3. Nourhène Khaled
  4. Alexandra Montagner
  5. Nicolas Leuenberger
  6. Justine Bertrand-Michel
  7. Eeswari Paramalingam
  8. Hervé Guillou
  9. Walter Wahli
(2016)
Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism
eLife 5:e11853.
https://doi.org/10.7554/eLife.11853

Share this article

https://doi.org/10.7554/eLife.11853

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Fridtjof Brauns, Nikolas H Claussen ... Boris I Shraiman
    Research Article

    Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rosalío Reyes, Arthur D Lander, Marcos Nahmad
    Research Article Updated

    Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here, we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between robustness and precision to establish tunable patterning properties in a target-specific manner.