Mapping oxygen concentration in the awake mouse brain

  1. Declan G Lyons
  2. Alexandre Parpaleix
  3. Morgane Roche
  4. Serge Charpak  Is a corresponding author
  1. Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, France

Abstract

Although critical for brain function, the physiological values of cerebral oxygen concentration have remained elusive because high-resolution measurements have only been performed during anesthesia, which affects two major parameters modulating tissue oxygenation: neuronal activity and blood flow. Using measurements of capillary erythrocyte-associated transients, fluctuations of oxygen partial pressure (Po2) associated with individual erythrocytes, to infer Po2 in the nearby neuropil, we report the first non-invasive micron-scale mapping of cerebral Po2 in awake, resting mice. Interstitial Po2 has similar values in the olfactory bulb glomerular layer and the somatosensory cortex, whereas there are large capillary hematocrit and erythrocyte flux differences. Awake tissue Po2 is about half that under isoflurane anesthesia, and within the cortex, vascular and interstitial Po2 values display layer-specific differences which dramatically contrast with those recorded under anesthesia. Our findings emphasize the importance of measuring energy parameters non-invasively in physiological conditions to precisely quantify and model brain metabolism.

Article and author information

Author details

  1. Declan G Lyons

    Laboratory of Neurophysiology and New Microscopies,, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandre Parpaleix

    Laboratory of Neurophysiology and New Microscopies,, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Morgane Roche

    Laboratory of Neurophysiology and New Microscopies,, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Serge Charpak

    Laboratory of Neurophysiology and New Microscopies,, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Paris, France
    For correspondence
    serge.charpak@parisdescartes.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Ethics

Animal experimentation: All animal care and experimentation was performed in accordance with the INSERM Animal Care and Use Committee guidelines (protocole number CEEA34.SC.122.12 and CEEA34.SC.123.12)

Version history

  1. Received: October 1, 2015
  2. Accepted: January 25, 2016
  3. Accepted Manuscript published: February 2, 2016 (version 1)
  4. Version of Record published: February 23, 2016 (version 2)

Copyright

© 2016, Lyons et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,745
    views
  • 904
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Declan G Lyons
  2. Alexandre Parpaleix
  3. Morgane Roche
  4. Serge Charpak
(2016)
Mapping oxygen concentration in the awake mouse brain
eLife 5:e12024.
https://doi.org/10.7554/eLife.12024

Share this article

https://doi.org/10.7554/eLife.12024

Further reading

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.