Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain

Abstract

Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22-/- cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus.

Article and author information

Author details

  1. Akiko Terauchi

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin M Johnson-Venkatesh

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brenna Bullock

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Lehtinen

    Department of Pathology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hisashi Umemori

    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    For correspondence
    hisashi.umemori@childrens.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal care and use in this study was in accordance with the institutional guidelines and approved by the Institutional Animal Care and Use Committees at Boston Children's Hospital (#13-11-2528) and University of Michigan (#PRO00003549).

Copyright

© 2016, Terauchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,307
    views
  • 495
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akiko Terauchi
  2. Erin M Johnson-Venkatesh
  3. Brenna Bullock
  4. Maria Lehtinen
  5. Hisashi Umemori
(2016)
Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain
eLife 5:e12151.
https://doi.org/10.7554/eLife.12151

Share this article

https://doi.org/10.7554/eLife.12151

Further reading

    1. Developmental Biology
    Martina Jabloñski, Guillermina M Luque ... Mariano G Buffone
    Research Article

    Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis (AE) and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, and live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network’s role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility.

    1. Developmental Biology
    Maarten F Zwart
    Insight

    New research shows that the neural circuit responsible for stabilising gaze can develop in the absence of motor neurons, contrary to a long-standing model in the field.