Behavioral training promotes multiple adaptive processes following acute hearing loss

  1. Peter Keating  Is a corresponding author
  2. Onayomi Rosenior-Patten
  3. Johannes C Dahmen
  4. Olivia Bell
  5. Andrew J King
  1. University of Oxford, United Kingdom

Abstract

The brain possesses a remarkable capacity to compensate for changes in inputs resulting from a range of sensory impairments. Developmental studies of sound localization have shown that adaptation to asymmetric hearing loss can be achieved either by reinterpreting altered spatial cues or by relying more on those cues that remain intact. Adaptation to monaural deprivation in adulthood is also possible, but appears to lack such flexibility. Here we show, however, that appropriate behavioral training enables monaurally-deprived adult humans to exploit both of these adaptive processes. Moreover, cortical recordings in ferrets reared with asymmetric hearing loss suggest that these forms of plasticity have distinct neural substrates. An ability to adapt to asymmetric hearing loss using multiple adaptive processes is therefore shared by different species and may persist throughout the lifespan. This highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.

Article and author information

Author details

  1. Peter Keating

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    peter.keating@dpag.ox.ac.uk
    Competing interests
    No competing interests declared.
  2. Onayomi Rosenior-Patten

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Johannes C Dahmen

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Olivia Bell

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Andrew J King

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Andrew J King, Reviewing editor, eLife.

Ethics

Animal experimentation: All procedures conformed to ethical standards approved by the Central University Research Ethics Committee (CUREC) at the University of Oxford. All work involving animals was performed under licenses granted by the UK Home Office under the Animals (Scientific Procedures) Act of 1986.

Human subjects: All procedures conformed to ethical standards approved by the Central University Research Ethics Committee (CUREC) at the University of Oxford. All human subjects provided informed written consent.

Reviewing Editor

  1. Thomas D Mrsic-Flogel, University of Basel, Switzerland

Publication history

  1. Received: October 12, 2015
  2. Accepted: March 23, 2016
  3. Accepted Manuscript published: March 23, 2016 (version 1)
  4. Version of Record published: April 20, 2016 (version 2)

Copyright

© 2016, Keating et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,532
    Page views
  • 384
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter Keating
  2. Onayomi Rosenior-Patten
  3. Johannes C Dahmen
  4. Olivia Bell
  5. Andrew J King
(2016)
Behavioral training promotes multiple adaptive processes following acute hearing loss
eLife 5:e12264.
https://doi.org/10.7554/eLife.12264
  1. Further reading

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Tooba Abbassi-Daloii, Salma el Abdellaoui ... Vered Raz
    Tools and Resources

    Skeletal muscles support the stability and mobility of the skeleton but differ in biomechanical properties and physiological functions. The intrinsic factors that regulate muscle-specific characteristics are poorly understood. To study these, we constructed a large atlas of RNA-seq profiles from six leg muscles and two locations from one muscle, using biopsies from 20 healthy young males. We identified differential expression patterns and cellular composition across the seven tissues using three bioinformatics approaches confirmed by large-scale newly developed quantitative immune-histology procedures. With all three procedures, the muscle samples clustered into three groups congruent with their anatomical location. Concomitant with genes marking oxidative metabolism, genes marking fast- or slow-twitch myofibers differed between the three groups. The groups of muscles with higher expression of slow-twitch genes were enriched in endothelial cells and showed higher capillary content. In addition, expression profiles of Homeobox (HOX) transcription factors differed between the three groups and were confirmed by spatial RNA hybridization. We created an open-source graphical interface to explore and visualize the leg muscle atlas (https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/). Our study reveals the molecular specialization of human leg muscles, and provides a novel resource to study muscle-specific molecular features, which could be linked with (patho)physiological processes.

    1. Neuroscience
    Lex J Gómez, James C Dooley, Mark S Blumberg
    Research Article

    In developing rats, behavioral state exerts a profound modulatory influence on neural activity throughout the sensorimotor system, including primary motor cortex (M1). We hypothesized that similar state-dependent modulation occurs in prefrontal cortical areas with which M1 forms functional connections. Here, using 8- and 12-day-old rats cycling freely between sleep and wake, we record neural activity in M1, secondary motor cortex (M2), and medial prefrontal cortex (mPFC). At both ages in all three areas, neural activity increased during active sleep (AS) compared with wake. Also, regardless of behavioral state, neural activity in all three areas increased during periods when limbs were moving. The movement-related activity in M2 and mPFC, like that in M1, is driven by sensory feedback. Our results, which diverge from those of previous studies using anesthetized pups, demonstrate that AS-dependent modulation and sensory responsivity extend to prefrontal cortex. These findings expand the range of possible factors shaping the activity-dependent development of higher-order cortical areas.