1. Neuroscience
Download icon

Behavioral training promotes multiple adaptive processes following acute hearing loss

  1. Peter Keating  Is a corresponding author
  2. Onayomi Rosenior-Patten
  3. Johannes C Dahmen
  4. Olivia Bell
  5. Andrew J King
  1. University of Oxford, United Kingdom
Short Report
  • Cited 13
  • Views 1,270
  • Annotations
Cite this article as: eLife 2016;5:e12264 doi: 10.7554/eLife.12264

Abstract

The brain possesses a remarkable capacity to compensate for changes in inputs resulting from a range of sensory impairments. Developmental studies of sound localization have shown that adaptation to asymmetric hearing loss can be achieved either by reinterpreting altered spatial cues or by relying more on those cues that remain intact. Adaptation to monaural deprivation in adulthood is also possible, but appears to lack such flexibility. Here we show, however, that appropriate behavioral training enables monaurally-deprived adult humans to exploit both of these adaptive processes. Moreover, cortical recordings in ferrets reared with asymmetric hearing loss suggest that these forms of plasticity have distinct neural substrates. An ability to adapt to asymmetric hearing loss using multiple adaptive processes is therefore shared by different species and may persist throughout the lifespan. This highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.

Article and author information

Author details

  1. Peter Keating

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    peter.keating@dpag.ox.ac.uk
    Competing interests
    No competing interests declared.
  2. Onayomi Rosenior-Patten

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Johannes C Dahmen

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Olivia Bell

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Andrew J King

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Andrew J King, Reviewing editor, eLife.

Ethics

Animal experimentation: All procedures conformed to ethical standards approved by the Central University Research Ethics Committee (CUREC) at the University of Oxford. All work involving animals was performed under licenses granted by the UK Home Office under the Animals (Scientific Procedures) Act of 1986.

Human subjects: All procedures conformed to ethical standards approved by the Central University Research Ethics Committee (CUREC) at the University of Oxford. All human subjects provided informed written consent.

Reviewing Editor

  1. Thomas D Mrsic-Flogel, University of Basel, Switzerland

Publication history

  1. Received: October 12, 2015
  2. Accepted: March 23, 2016
  3. Accepted Manuscript published: March 23, 2016 (version 1)
  4. Version of Record published: April 20, 2016 (version 2)

Copyright

© 2016, Keating et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,270
    Page views
  • 347
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Chen Chen et al.
    Research Article

    While animals track or search for targets, sensory organs make small unexplained movements on top of the primary task-related motions. While multiple theories for these movements exist—in that they support infotaxis, gain adaptation, spectral whitening, and high-pass filtering—predicted trajectories show poor fit to measured trajectories. We propose a new theory for these movements called energy-constrained proportional betting, where the probability of moving to a location is proportional to an expectation of how informative it will be balanced against the movement’s predicted energetic cost. Trajectories generated in this way show good agreement with measured trajectories of fish tracking an object using electrosense, a mammal and an insect localizing an odor source, and a moth tracking a flower using vision. Our theory unifies the metabolic cost of motion with information theory. It predicts sense organ movements in animals and can prescribe sensor motion for robots to enhance performance.

    1. Ecology
    2. Neuroscience
    Felix JH Hol et al.
    Tools and Resources

    Female mosquitoes need a blood meal to reproduce, and in obtaining this essential nutrient they transmit deadly pathogens. Although crucial for the spread of mosquito-borne diseases, blood feeding remains poorly understood due to technological limitations. Indeed, studies often expose human subjects to assess biting behavior. Here, we present the biteOscope, a device that attracts mosquitoes to a host mimic which they bite to obtain an artificial blood meal. The host mimic is transparent, allowing high-resolution imaging of the feeding mosquito. Using machine learning we extract detailed behavioral statistics describing the locomotion, pose, biting, and feeding dynamics of Aedes aegypti, Aedes albopictus, Anopheles stephensi, and Anopheles coluzzii. In addition to characterizing behavioral patterns, we discover that the common insect repellent DEET repels Anopheles coluzzii upon contact with their legs. The biteOscope provides a new perspective on mosquito blood feeding, enabling the high-throughput quantitative characterization of this lethal behavior.