Acquisition of exogenous haem is essential for tick reproduction

  1. Jan Perner
  2. Roman Sobotka
  3. Radek Sima
  4. Jitka Konvickova
  5. Daniel Sojka
  6. Pedro Lagerblad de Oliveira
  7. Ondrej Hajdusek
  8. Petr Kopacek  Is a corresponding author
  1. Biology Centre CAS, Czech Republic
  2. Institute of Microbiology CAS, Czech Republic
  3. Universidade Federal do Rio de Janeiro, Brazil

Abstract

Haem and iron homeostasis in most eukaryotic cells is based on a balanced flux between haem biosynthesis and haem oxygenase-mediated degradation.Unlike most eukaryotes, ticks possess an incomplete haem biosynthetic pathway and, together with other (non-haematophagous) mites, lack a gene encoding haem oxygenase. We demonstrated, by membrane feeding, that ticks do not acquire bioavailable iron from haemoglobin-derived haem. However, ticks require dietary haemoglobin as an exogenous source of haem since, feeding with haemoglobin-depleted serum led to aborted embryogenesis. Supplementation of serum with haemoglobin fully restored egg fertility. Surprisingly, haemoglobin could be completely substituted by serum proteins for the provision of amino-acids in vitellogenesis. Acquired haem is distributed by haemolymph carrier protein(s) and sequestered by vitellins in the developing oocytes.This work extends, substantially, current knowledge of haem auxotrophy in ticks and underscores the importance of haem and iron metabolism as rational targets for anti-tick interventions.

Article and author information

Author details

  1. Jan Perner

    Biology Centre CAS, Ceske Budejovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Roman Sobotka

    Institute of Microbiology, Institute of Microbiology CAS, Trebon, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Radek Sima

    Biology Centre CAS, Ceske Budejovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Jitka Konvickova

    Biology Centre CAS, Ceske Budejovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Sojka

    Biology Centre CAS, Ceske Budejovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Pedro Lagerblad de Oliveira

    Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Ondrej Hajdusek

    Biology Centre CAS, Ceske Budejovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Petr Kopacek

    Biology Centre CAS, Ceske Budejovice, Czech Republic
    For correspondence
    kopajz@paru.cas.cz
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Utpal Pal, University of Maryland, United States

Ethics

Animal experimentation: All laboratory animals were treated in accordancewith the Animal Protection Law of the Czech Republic No. 246/1992 Sb., ethics approval No.095/2012.

Version history

  1. Received: October 15, 2015
  2. Accepted: March 3, 2016
  3. Accepted Manuscript published: March 7, 2016 (version 1)
  4. Version of Record published: March 24, 2016 (version 2)

Copyright

© 2016, Perner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,832
    views
  • 556
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Perner
  2. Roman Sobotka
  3. Radek Sima
  4. Jitka Konvickova
  5. Daniel Sojka
  6. Pedro Lagerblad de Oliveira
  7. Ondrej Hajdusek
  8. Petr Kopacek
(2016)
Acquisition of exogenous haem is essential for tick reproduction
eLife 5:e12318.
https://doi.org/10.7554/eLife.12318

Share this article

https://doi.org/10.7554/eLife.12318

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.