Cascade of neural processing orchestrates cognitive control in human frontal cortex

  1. Hanlin Tang
  2. Hsiang-Yu Yu
  3. Chien-Chen Chou
  4. Nathan E Crone
  5. Joseph R Madsen
  6. William S Anderson
  7. Gabriel Kreiman  Is a corresponding author
  1. Harvard University, United States
  2. Taipei Veterans General Hospital, Taiwan
  3. Johns Hopkins School of Medicine, United States
  4. Harvard Medical School, United States
  5. Johns Hopkins Medical School, United States

Abstract

Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex.

Article and author information

Author details

  1. Hanlin Tang

    Program in Biophysics, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hsiang-Yu Yu

    Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Chien-Chen Chou

    Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Nathan E Crone

    Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joseph R Madsen

    Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. William S Anderson

    Department of Neurosurgery, Johns Hopkins Medical School, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gabriel Kreiman

    Program in Biophysics, Harvard University, Boston, United States
    For correspondence
    gkreiman@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained for each participant. All procedures were approved by the Institutional Review Boards at each institution (Methods).

Copyright

© 2016, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,242
    views
  • 542
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanlin Tang
  2. Hsiang-Yu Yu
  3. Chien-Chen Chou
  4. Nathan E Crone
  5. Joseph R Madsen
  6. William S Anderson
  7. Gabriel Kreiman
(2016)
Cascade of neural processing orchestrates cognitive control in human frontal cortex
eLife 5:e12352.
https://doi.org/10.7554/eLife.12352

Share this article

https://doi.org/10.7554/eLife.12352

Further reading

    1. Neuroscience
    Christoph Arne Wittkamp, Maren-Isabel Wolf, Michael Rose
    Research Article

    Pain is heavily modulated by expectations. Whereas the integration of expectations with sensory information has been examined in some detail, little is known about how positive and negative expectations are generated and their neural dynamics from generation over anticipation to the integration with sensory information. The present preregistered study employed a novel paradigm to induce positive and negative expectations on a trial-by-trial basis and examined the neural mechanisms using combined EEG-fMRI measurements (n=50). We observed substantially different neural representations between the anticipatory and the actual pain period. In the anticipation phase i.e., before the nociceptive input, the insular cortex, dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC) showed increased activity for directed expectations regardless of their valence. Interestingly, a differentiation between positive and negative expectations within the majority of areas only occurred after the arrival of nociceptive information. FMRI-informed EEG analyses could reliably track the temporal sequence of processing showing an early effect in the DLPFC, followed by the anterior insula and late effects in the ACC. The observed effects indicate the involvement of different expectation-related subprocesses, including the transformation of visual information into a value signal that is maintained and differentiated according to its valence only during stimulus processing.

    1. Medicine
    2. Neuroscience
    Sophie Leclercq, Hany Ahmed ... Nathalie Delzenne
    Research Article

    Background:

    Alcohol use disorder (AUD) is a global health problem with limited therapeutic options. The biochemical mechanisms that lead to this disorder are not yet fully understood, and in this respect, metabolomics represents a promising approach to decipher metabolic events related to AUD. The plasma metabolome contains a plethora of bioactive molecules that reflects the functional changes in host metabolism but also the impact of the gut microbiome and nutritional habits.

    Methods:

    In this study, we investigated the impact of severe AUD (sAUD), and of a 3-week period of alcohol abstinence, on the blood metabolome (non-targeted LC-MS metabolomics analysis) in 96 sAUD patients hospitalized for alcohol withdrawal.

    Results:

    We found that the plasma levels of different lipids ((lyso)phosphatidylcholines, long-chain fatty acids), short-chain fatty acids (i.e. 3-hydroxyvaleric acid) and bile acids were altered in sAUD patients. In addition, several microbial metabolites, including indole-3-propionic acid, p-cresol sulfate, hippuric acid, pyrocatechol sulfate, and metabolites belonging to xanthine class (paraxanthine, theobromine and theophylline) were sensitive to alcohol exposure and alcohol withdrawal. 3-Hydroxyvaleric acid, caffeine metabolites (theobromine, paraxanthine, and theophylline) and microbial metabolites (hippuric acid and pyrocatechol sulfate) were correlated with anxiety, depression and alcohol craving. Metabolomics analysis in postmortem samples of frontal cortex and cerebrospinal fluid of those consuming a high level of alcohol revealed that those metabolites can be found also in brain tissue.

    Conclusions:

    Our data allow the identification of neuroactive metabolites, from interactions between food components and microbiota, which may represent new targets arising in the management of neuropsychiatric diseases such as sAUD.

    Funding:

    Gut2Behave project was initiated from ERA-NET NEURON network (Joint Transnational Call 2019) and was financed by Academy of Finland, French National Research Agency (ANR-19-NEUR-0003-03) and the Fonds de la Recherche Scientifique (FRS-FNRS; PINT-MULTI R.8013.19, Belgium). Metabolomics analysis of the TSDS samples was supported by grant from the Finnish Foundation for Alcohol Studies.