A cellular and regulatory map of the cholinergic nervous system of C.elegans

  1. Laura Pereira
  2. Paschalis Kratsios
  3. Esther Serrano-Saiz
  4. Hila Sheftel
  5. Avi E Mayo
  6. David H Hall
  7. John G White
  8. Brigitte LeBoeuf
  9. L Rene Garcia
  10. Uri Alon
  11. Oliver Hobert  Is a corresponding author
  1. Howard Hughes Medical Institute, Columbia University, United States
  2. Weizmann Institute of Science, Israel
  3. Albert Einstein College of Medicine, United States
  4. MRC Laboratory of Molecular Biology, United Kingdom
  5. Texas A&M University, United States
  6. Howard Hughes Medical Institute, Texas A&M University, United States

Abstract

Nervous system maps are of critical importance for understanding how nervous systemsdevelop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C.elegans nervous system. We find that acetylcholine is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional control mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly.

Article and author information

Author details

  1. Laura Pereira

    Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  2. Paschalis Kratsios

    Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New york, United States
    Competing interests
    No competing interests declared.
  3. Esther Serrano-Saiz

    Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Hila Sheftel

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  5. Avi E Mayo

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  6. David H Hall

    Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  7. John G White

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Brigitte LeBoeuf

    Department of Biology, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  9. L Rene Garcia

    Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  10. Uri Alon

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  11. Oliver Hobert

    Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States
    For correspondence
    or38@columbia.edu
    Competing interests
    Oliver Hobert, Reviewing editor, eLife.

Copyright

© 2015, Pereira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,949
    views
  • 1,847
    downloads
  • 256
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Pereira
  2. Paschalis Kratsios
  3. Esther Serrano-Saiz
  4. Hila Sheftel
  5. Avi E Mayo
  6. David H Hall
  7. John G White
  8. Brigitte LeBoeuf
  9. L Rene Garcia
  10. Uri Alon
  11. Oliver Hobert
(2015)
A cellular and regulatory map of the cholinergic nervous system of C.elegans
eLife 4:e12432.
https://doi.org/10.7554/eLife.12432

Share this article

https://doi.org/10.7554/eLife.12432

Further reading

    1. Neuroscience
    Yiting Li, Wenqu Yin ... Baoming Li
    Research Article

    Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.