AMPylation matches BiP activity to client protein load in the endoplasmic reticulum

  1. Steffen Preissler
  2. Cláudia Rato
  3. Ruming Chen
  4. Robin Antrobus
  5. Shujing Ding
  6. Ian M Fearnley
  7. David Ron  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. MRC Mitochondrial Biology Unit, United Kingdom

Abstract

The endoplasmic reticulum (ER) localized Hsp70 chaperone BiP affects protein folding homeostasis and the response to ER stress. Reversible inactivating covalent modification of BiP is believed to contribute to the balance between chaperones and unfolded ER proteins, but the nature of this modification has so far been hinted at indirectly. We report that deletion of FICD, a gene encoding an ER-localized AMPylating enzyme, abolished detectable modification of endogenous BiP enhancing ER buffering of unfolded protein stress in mammalian cells, whilst deregulated FICD activity had the opposite effect. In vitro, FICD AMPylated BiP to completion on a single residue, Thr518. AMPylation increased, in a strictly FICD-dependent manner, as the flux of proteins entering the ER was attenuated in vivo. In vitro, Thr518 AMPylation enhanced peptide dissociation from BiP 6-fold and abolished stimulation of ATP hydrolysis by J-domain cofactor. These findings expose the molecular basis for covalent inactivation of BiP.

Article and author information

Author details

  1. Steffen Preissler

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  2. Cláudia Rato

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ruming Chen

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Robin Antrobus

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Shujing Ding

    MRC Mitochondrial Biology Unit, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Ian M Fearnley

    MRC Mitochondrial Biology Unit, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. David Ron

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    dr360@medschl.cam.ac.uk
    Competing interests
    David Ron, Reviewing editor, eLife.

Reviewing Editor

  1. Reid Gilmore, University of Massachusetts Medical School, United States

Version history

  1. Received: October 27, 2015
  2. Accepted: December 14, 2015
  3. Accepted Manuscript published: December 17, 2015 (version 1)
  4. Version of Record published: January 22, 2016 (version 2)

Copyright

© 2015, Preissler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,896
    Page views
  • 974
    Downloads
  • 77
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Steffen Preissler
  2. Cláudia Rato
  3. Ruming Chen
  4. Robin Antrobus
  5. Shujing Ding
  6. Ian M Fearnley
  7. David Ron
(2015)
AMPylation matches BiP activity to client protein load in the endoplasmic reticulum
eLife 4:e12621.
https://doi.org/10.7554/eLife.12621

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Ian R Outhwaite, Sukrit Singh ... Markus A Seeliger
    Research Article

    Kinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. However, the high sequence and structural conservation of the catalytic kinase domain complicates the development of selective kinase inhibitors. Inhibition of off-target kinases makes it difficult to study the mechanism of inhibitors in biological systems. Current efforts focus on the development of inhibitors with improved selectivity. Here, we present an alternative solution to this problem by combining inhibitors with divergent off-target effects. We develop a multicompound-multitarget scoring (MMS) method that combines inhibitors to maximize target inhibition and to minimize off-target inhibition. Additionally, this framework enables optimization of inhibitor combinations for multiple on-targets. Using MMS with published kinase inhibitor datasets we determine potent inhibitor combinations for target kinases with better selectivity than the most selective single inhibitor and validate the predicted effect and selectivity of inhibitor combinations using in vitro and in cellulo techniques. MMS greatly enhances selectivity in rational multitargeting applications. The MMS framework is generalizable to other non-kinase biological targets where compound selectivity is a challenge and diverse compound libraries are available.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Rui-Qiu Yang, Yong-Hong Chen ... Cheng-Gang Zou
    Research Article Updated

    An imbalance of the gut microbiota, termed dysbiosis, has a substantial impact on host physiology. However, the mechanism by which host deals with gut dysbiosis to maintain fitness remains largely unknown. In Caenorhabditis elegans, Escherichia coli, which is its bacterial diet, proliferates in its intestinal lumen during aging. Here, we demonstrate that progressive intestinal proliferation of E. coli activates the transcription factor DAF-16, which is required for maintenance of longevity and organismal fitness in worms with age. DAF-16 up-regulates two lysozymes lys-7 and lys-8, thus limiting the bacterial accumulation in the gut of worms during aging. During dysbiosis, the levels of indole produced by E. coli are increased in worms. Indole is involved in the activation of DAF-16 by TRPA-1 in neurons of worms. Our finding demonstrates that indole functions as a microbial signal of gut dysbiosis to promote fitness of the host.