Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition

  1. Shalini Singh
  2. Danielle Howell
  3. Niraj Trivedi
  4. Ketty Kessler
  5. Taren Ong
  6. Pedro Rosmaninho
  7. Alexandre ASF Raposo
  8. Giles Robinson
  9. Martine F. Roussel
  10. Diogo S Castro
  11. David J Solecki  Is a corresponding author
  1. St. Jude Children's Research Hospital, United States
  2. Universite Denis Diderot (Paris VII), France
  3. Instituto Gulbenkian de Ciência Oeiras, Portugal
  4. Instituto Gulbenkian de Ciência, Portugal
  5. St jude Children's Research Hospital, United States

Abstract

In the developing mammalian brain, differentiating neurons mature morphologically via neuronal polarity programs. Despite discovery of polarity pathways acting concurrently with differentiation, it's unclear how neurons traverse complex polarity transitions or how neuronal progenitors delay polarization during development. We report that zinc finger and homeobox transcription factor-1 (Zeb1), a master regulator of epithelial polarity, controls neuronal differentiation by transcriptionally repressing polarity genes in neuronal progenitors. Necessity-sufficiency testing and functional target screening in cerebellar granule neuron progenitors (GNPs) reveal that Zeb1 inhibits polarization and retains progenitors in their germinal zone (GZ). Zeb1 expression is elevated in the Sonic Hedgehog (SHH) medulloblastoma subgroup originating from GNPs with persistent SHH activation. Restored polarity signaling promotes differentiation and rescues GZ exit, suggesting a model for future differentiative therapies. These results reveal unexpected parallels between neuronal differentiation and mesenchymal-to-epithelial transition and suggest that active polarity inhibition contributes to altered GZ exit in pediatric brain cancers.

Article and author information

Author details

  1. Shalini Singh

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Danielle Howell

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Niraj Trivedi

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ketty Kessler

    Universite Denis Diderot (Paris VII), Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Taren Ong

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pedro Rosmaninho

    Department of Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexandre ASF Raposo

    Department of Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Giles Robinson

    Department of Oncology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Martine F. Roussel

    Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Diogo S Castro

    Department of Molecular Neurobiology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  11. David J Solecki

    Department of Developmental Neurobiology, St jude Children's Research Hospital, Memphis, United States
    For correspondence
    david.solecki@stjude.org
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All mouse lines were maintained in standard conditions in accordance with guidelines established and approved by Institutional Animal Care and Use Committee at St. Jude Children's Research Hospital (protocol number = 483).

Copyright

© 2016, Singh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,332
    views
  • 755
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shalini Singh
  2. Danielle Howell
  3. Niraj Trivedi
  4. Ketty Kessler
  5. Taren Ong
  6. Pedro Rosmaninho
  7. Alexandre ASF Raposo
  8. Giles Robinson
  9. Martine F. Roussel
  10. Diogo S Castro
  11. David J Solecki
(2016)
Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition
eLife 5:e12717.
https://doi.org/10.7554/eLife.12717

Share this article

https://doi.org/10.7554/eLife.12717

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yi Sun, Zhe Chen ... Chengtian Zhao
    Short Report

    How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms. In contrast, the mechanism of length regulation in cilia across diverse cell types within multicellular organisms remains a mystery. Similar to humans, zebrafish contain diverse types of cilia with variable lengths. Taking advantage of the transparency of zebrafish embryos, we conducted a comprehensive investigation into intraflagellar transport (IFT), an essential process for ciliogenesis. By generating a transgenic line carrying Ift88-GFP transgene, we observed IFT in multiple types of cilia with varying lengths. Remarkably, cilia exhibited variable IFT speeds in different cell types, with longer cilia exhibiting faster IFT speeds. This increased IFT speed in longer cilia is likely not due to changes in common factors that regulate IFT, such as motor selection, BBSome proteins, or tubulin modification. Interestingly, longer cilia in the ear cristae tend to form larger IFT compared to shorter spinal cord cilia. Reducing the size of IFT particles by knocking down Ift88 slowed IFT speed and resulted in the formation of shorter cilia. Our study proposes an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex. This discovery may provide further insights into our understanding of how organelle size is regulated in higher vertebrates.

    1. Developmental Biology
    2. Neuroscience
    Xingsen Zhao, Qihang Sun ... Xuekun Li
    Research Article

    Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.