Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation

  1. Rosa Maria Sanchez Panchuelo  Is a corresponding author
  2. Rochelle Ackerley
  3. Paul M Glover
  4. Richard W Bowtell
  5. Johan Wessberg
  6. Susan T Francis
  7. Francis McGlone
  1. University of Nottingham, United Kingdom
  2. University of Gothenburg, Sweden
  3. Liverpool John Moores University, United Kingdom

Abstract

Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit's receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex.

Article and author information

Author details

  1. Rosa Maria Sanchez Panchuelo

    Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
    For correspondence
    rosa.panchuelo@nottingham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Rochelle Ackerley

    Department of Physiology, University of Gothenburg, Göteborg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul M Glover

    Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard W Bowtell

    Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Johan Wessberg

    Department of Physiology, University of Gothenburg, Göteborg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Susan T Francis

    Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Francis McGlone

    School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: This work was approved by the University of Nottingham Medical School Ethics Committee. All participants gave full, written, informed consent.

Copyright

© 2016, Sanchez Panchuelo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,327
    views
  • 350
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rosa Maria Sanchez Panchuelo
  2. Rochelle Ackerley
  3. Paul M Glover
  4. Richard W Bowtell
  5. Johan Wessberg
  6. Susan T Francis
  7. Francis McGlone
(2016)
Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation
eLife 5:e12812.
https://doi.org/10.7554/eLife.12812

Share this article

https://doi.org/10.7554/eLife.12812

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Alfonso Aguilera, Marta Nieto
    Insight

    A tailored cocktail of genes can reprogram a subset of progenitors to no longer produce glial cells and instead develop into neurons involved in motor control.

    1. Neuroscience
    Merlin Monzel, Pitshaporn Leelaarporn ... Cornelia McCormick
    Research Article

    Aphantasia refers to reduced or absent visual imagery. While most of us can readily recall decade-old personal experiences (autobiographical memories, AM) with vivid mental images, there is a dearth of information about whether the loss of visual imagery in aphantasics affects their AM retrieval. The hippocampus is thought to be a crucial hub in a brain-wide network underlying AM. One important question is whether this network, especially the connectivity of the hippocampus, is altered in aphantasia. In the current study, we tested 14 congenital aphantasics and 16 demographically matched controls in an AM fMRI task to investigate how key brain regions (i.e. hippocampus and visual-perceptual cortices) interact with each other during AM re-experiencing. All participants were interviewed regarding their autobiographical memory to examine their episodic and semantic recall of specific events. Aphantasics reported more difficulties in recalling AM, were less confident about their memories, and described less internal and emotional details than controls. Neurally, aphantasics displayed decreased hippocampal and increased visual-perceptual cortex activation during AM retrieval compared to controls. In addition, controls showed strong negative functional connectivity between the hippocampus and the visual cortex during AM and resting-state functional connectivity between these two brain structures predicted better visualization skills. Our results indicate that visual mental imagery plays an important role in detail-rich vivid AM, and that this type of cognitive function is supported by the functional connection between the hippocampus and the visual-perceptual cortex.