Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases

  1. Martin Steger
  2. Francesca Tonelli
  3. Genta Ito
  4. Paul Davies
  5. Matthias Trost
  6. Melanie Vetter
  7. Stefanie Wachter
  8. Esben Lorentzen
  9. Graham Duddy
  10. Stephen Wilson
  11. Marco AS Baptista
  12. Brian K Fiske
  13. Matthew J Fell
  14. John A Morrow
  15. Alastair D Reith
  16. Dario R Alessi
  17. Matthias Mann  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. University of Dundee, United Kingdom
  3. The Wellcome Trust Sanger Institute, United Kingdom
  4. GlaxoSmithKline Pharmaceuticals R&D, United Kingdom
  5. The Michael J. Fox Foundation for Parkinson's Research, United States
  6. Merck Research Laboratories, United States

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Steger
  2. Francesca Tonelli
  3. Genta Ito
  4. Paul Davies
  5. Matthias Trost
  6. Melanie Vetter
  7. Stefanie Wachter
  8. Esben Lorentzen
  9. Graham Duddy
  10. Stephen Wilson
  11. Marco AS Baptista
  12. Brian K Fiske
  13. Matthew J Fell
  14. John A Morrow
  15. Alastair D Reith
  16. Dario R Alessi
  17. Matthias Mann
(2016)
Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases
eLife 5:e12813.
https://doi.org/10.7554/eLife.12813

Share this article

https://doi.org/10.7554/eLife.12813