1. Neuroscience
Download icon

Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model

  1. Satoru M Sato
  2. Catherine S Woolley  Is a corresponding author
  1. Northwestern University, United States
Research Article
  • Cited 42
  • Views 2,851
  • Annotations
Cite this article as: eLife 2016;5:e12917 doi: 10.7554/eLife.12917


Status epilepticus (SE) is a common neurological emergency for which new treatments are needed. In vitro studies suggest a novel approach to controlling seizures in SE: acute inhibition of estrogen synthesis in the brain. Here, we show in rats that systemic administration of an aromatase (estrogen synthase) inhibitor after seizure onset strongly suppresses both electrographic and behavioral seizures induced by kainic acid (KA). We found that KA-induced SE stimulates synthesis of estradiol (E2) in the hippocampus, a brain region commonly involved in seizures and where E2 is known to acutely promote neural activity. Hippocampal E2 levels were higher in rats experiencing more severe seizures. Consistent with a seizure-promoting effect of hippocampal estrogen synthesis, intra-hippocampal aromatase inhibition also suppressed seizures. These results reveal neurosteroid estrogen synthesis as a previously unknown factor in the escalation of seizures and suggest that acute administration of aromatase inhibitors may be an effective treatment for SE.

Article and author information

Author details

  1. Satoru M Sato

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Catherine S Woolley

    Department of Neurobiology, Northwestern University, Evanston, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.


Animal experimentation: All animal procedures were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Northwestern University Animal Care and Use Committee. Animal Study Protocol IS00000520 (expires 6/26/2017)Animal Welfare Assurance A3283-01

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Publication history

  1. Received: November 8, 2015
  2. Accepted: April 11, 2016
  3. Accepted Manuscript published: April 15, 2016 (version 1)
  4. Accepted Manuscript updated: April 18, 2016 (version 2)
  5. Version of Record published: May 10, 2016 (version 3)
  6. Version of Record updated: July 1, 2016 (version 4)


© 2016, Sato & Woolley

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,851
    Page views
  • 575
  • 42

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Spencer Chin-Yu Chen et al.
    Research Article Updated

    Can direct stimulation of primate V1 substitute for a visual stimulus and mimic its perceptual effect? To address this question, we developed an optical-genetic toolkit to ‘read’ neural population responses using widefield calcium imaging, while simultaneously using optogenetics to ‘write’ neural responses into V1 of behaving macaques. We focused on the phenomenon of visual masking, where detection of a dim target is significantly reduced by a co-localized medium-brightness mask (Cornsweet and Pinsker, 1965; Whittle and Swanston, 1974). Using our toolkit, we tested whether V1 optogenetic stimulation can recapitulate the perceptual masking effect of a visual mask. We find that, similar to a visual mask, low-power optostimulation can significantly reduce visual detection sensitivity, that a sublinear interaction between visual- and optogenetic-evoked V1 responses could account for this perceptual effect, and that these neural and behavioral effects are spatially selective. Our toolkit and results open the door for further exploration of perceptual substitutions by direct stimulation of sensory cortex.