Neuronal processing of noxious thermal stimuli mediated by dendritic Ca2+ influx in Drosophila somatosensory neurons

  1. Shin-Ichiro Terada
  2. Daisuke Matsubara
  3. Koun Onodera
  4. Masanori Matsuzaki
  5. Tadashi Uemura
  6. Tadao Usui  Is a corresponding author
  1. Kyoto University, Japan
  2. National Institute for Basic Biology, Japan

Abstract

Adequate responses to noxious stimuli causing tissue damages are essential for organismal survival. Class IV neurons in Drosophila larvae are polymodal nociceptors responsible for thermal, mechanical, and light sensation. Importantly, activation of Class IV provoked distinct avoidance behaviors, depending on the inputs. We found that noxious thermal stimuli, but not blue light stimulation, caused a unique pattern of Class IV, which were composed of pauses after high frequency spike trains and a large Ca2+ rise in the dendrite (the Ca2+ transient). Both of these responses depended on two TRPA channels and the L-type voltage-gated calcium channel (L-VGCC), showing that the thermosensation provokes Ca2+ influx. The precipitous fluctuation of firing rate in Class IV neurons enhanced the robust heat avoidance. We hypothesize that the Ca2+ influx can be a key signal encoding a specific modality.

Article and author information

Author details

  1. Shin-Ichiro Terada

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Daisuke Matsubara

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Koun Onodera

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masanori Matsuzaki

    Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tadashi Uemura

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Tadao Usui

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    For correspondence
    tadao.usui@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Version history

  1. Received: November 11, 2015
  2. Accepted: February 13, 2016
  3. Accepted Manuscript published: February 15, 2016 (version 1)
  4. Version of Record published: February 29, 2016 (version 2)

Copyright

© 2016, Terada et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,004
    views
  • 775
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shin-Ichiro Terada
  2. Daisuke Matsubara
  3. Koun Onodera
  4. Masanori Matsuzaki
  5. Tadashi Uemura
  6. Tadao Usui
(2016)
Neuronal processing of noxious thermal stimuli mediated by dendritic Ca2+ influx in Drosophila somatosensory neurons
eLife 5:e12959.
https://doi.org/10.7554/eLife.12959

Share this article

https://doi.org/10.7554/eLife.12959

Further reading

    1. Neuroscience
    Yelyzaveta Bessonova, Baranidharan Raman
    Research Article

    Behavioral responses to many odorants are not fixed but are flexible, varying based on organismal needs. How such variations arise and the role of various neuromodulators in achieving flexible neural-to-behavioral mapping is not fully understood. In this study, we examined how serotonin modulates the neural and behavioral responses to odorants in locusts (Schistocerca americana). Our results indicated that serotonin can increase or decrease appetitive behavior in an odor-specific manner. On the other hand, in the antennal lobe, serotonergic modulation enhanced odor-evoked response strength but left the temporal features or the combinatorial response profiles unperturbed. This result suggests that serotonin allows for sensitive and robust recognition of odorants. Nevertheless, the uniform neural response amplification appeared to be at odds with the observed stimulus-specific behavioral modulation. We show that a simple linear model with neural ensembles segregated based on behavioral relevance is sufficient to explain the serotonin-mediated flexible mapping between neural and behavioral responses.

    1. Neuroscience
    Olivier Codol, Jonathan A Michaels ... Paul L Gribble
    Tools and Resources

    Artificial neural networks (ANNs) are a powerful class of computational models for unravelling neural mechanisms of brain function. However, for neural control of movement, they currently must be integrated with software simulating biomechanical effectors, leading to limiting impracticalities: (1) researchers must rely on two different platforms and (2) biomechanical effectors are not generally differentiable, constraining researchers to reinforcement learning algorithms despite the existence and potential biological relevance of faster training methods. To address these limitations, we developed MotorNet, an open-source Python toolbox for creating arbitrarily complex, differentiable, and biomechanically realistic effectors that can be trained on user-defined motor tasks using ANNs. MotorNet is designed to meet several goals: ease of installation, ease of use, a high-level user-friendly application programming interface, and a modular architecture to allow for flexibility in model building. MotorNet requires no dependencies outside Python, making it easy to get started with. For instance, it allows training ANNs on typically used motor control models such as a two joint, six muscle, planar arm within minutes on a typical desktop computer. MotorNet is built on PyTorch and therefore can implement any network architecture that is possible using the PyTorch framework. Consequently, it will immediately benefit from advances in artificial intelligence through PyTorch updates. Finally, it is open source, enabling users to create and share their own improvements, such as new effector and network architectures or custom task designs. MotorNet’s focus on higher-order model and task design will alleviate overhead cost to initiate computational projects for new researchers by providing a standalone, ready-to-go framework, and speed up efforts of established computational teams by enabling a focus on concepts and ideas over implementation.