The 'de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium

  1. Ellen N Elliott
  2. Karyn L Sheaffer
  3. Klaus H Kaestner  Is a corresponding author
  1. The Jackson Laboratory for Genomic Medicine, United States
  2. University of Pennsylvania, United States

Abstract

Dnmt1 is critical for immediate postnatal intestinal development, but is not required for the survival of the adult intestinal epithelium, the only rapidly dividing somatic tissue for which this has been shown. Acute Dnmt1 deletion elicits dramatic hypomethylation and genomic instability. Recovery of DNA methylation state and intestinal health is dependent on the de novo methyltransferase Dnmt3b. Ablation of both Dnmt1 and Dnmt3b in the intestinal epithelium is lethal, while deletion of either Dnmt1 or Dnmt3b has no effect on survival. These results demonstrate that Dnmt1 and Dnmt3b cooperate to maintain DNA methylation and genomic integrity in the intestinal epithelium.

Article and author information

Author details

  1. Ellen N Elliott

    The Jackson Laboratory for Genomic Medicine, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Karyn L Sheaffer

    Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Klaus H Kaestner

    Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    kaestner@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (804436) of the University of Pennsylvania. All surgery was performed under isofluranel anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Elliott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,104
    views
  • 593
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ellen N Elliott
  2. Karyn L Sheaffer
  3. Klaus H Kaestner
(2016)
The 'de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium
eLife 5:e12975.
https://doi.org/10.7554/eLife.12975

Share this article

https://doi.org/10.7554/eLife.12975