Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

  1. Andisheh Abedini
  2. Annette Plesner
  3. Ping Cao
  4. Zachary Ridgway
  5. Jinghua Zhang
  6. Ling-Hsien Tu
  7. Chris T Middleton
  8. Brian Chao
  9. Daniel J Sartori
  10. Fanling Meng
  11. Hui Wang
  12. Amy G Wong
  13. Martin T Zanni
  14. C Bruce Verchere
  15. Daniel P Raleigh  Is a corresponding author
  16. Ann Marie Schmidt  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Novo Nordisk, Denmark
  3. Stony Brook University, United States
  4. PhaseTech Spectroscopy, Inc., United States
  5. University of Wisconsin-Madison, United States
  6. University of British Columbia, Canada

Abstract

Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death.

Article and author information

Author details

  1. Andisheh Abedini

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Annette Plesner

    Novo Nordisk, Bagsværd, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Ping Cao

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zachary Ridgway

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jinghua Zhang

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ling-Hsien Tu

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chris T Middleton

    PhaseTech Spectroscopy, Inc., Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Brian Chao

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel J Sartori

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Fanling Meng

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hui Wang

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Amy G Wong

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Martin T Zanni

    Department of Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. C Bruce Verchere

    Child & Family Research Institute and Department of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel P Raleigh

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    For correspondence
    Daniel.Raleigh@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
  16. Ann Marie Schmidt

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    For correspondence
    annmarie.schmidt@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jeffery W Kelly, The Scripps Research Institute, United States

Ethics

Animal experimentation: All procedures were approved by the Institutional Animal Care and Use Committee of New York University Langone Medical Center (NYULMC) and conform to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH) (8th Edition, 2011, ISBN 10: 0-309-15400-6). The Animal Care and Use Program at NYULMC are in full compliance with NIH policy (NYULMC Compliance Number is A3435-01).

Version history

  1. Received: November 12, 2015
  2. Accepted: May 20, 2016
  3. Accepted Manuscript published: May 23, 2016 (version 1)
  4. Accepted Manuscript updated: June 1, 2016 (version 2)
  5. Version of Record published: July 11, 2016 (version 3)

Copyright

© 2016, Abedini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,176
    views
  • 936
    downloads
  • 132
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andisheh Abedini
  2. Annette Plesner
  3. Ping Cao
  4. Zachary Ridgway
  5. Jinghua Zhang
  6. Ling-Hsien Tu
  7. Chris T Middleton
  8. Brian Chao
  9. Daniel J Sartori
  10. Fanling Meng
  11. Hui Wang
  12. Amy G Wong
  13. Martin T Zanni
  14. C Bruce Verchere
  15. Daniel P Raleigh
  16. Ann Marie Schmidt
(2016)
Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics
eLife 5:e12977.
https://doi.org/10.7554/eLife.12977

Share this article

https://doi.org/10.7554/eLife.12977

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.