Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

  1. Andisheh Abedini
  2. Annette Plesner
  3. Ping Cao
  4. Zachary Ridgway
  5. Jinghua Zhang
  6. Ling-Hsien Tu
  7. Chris T Middleton
  8. Brian Chao
  9. Daniel J Sartori
  10. Fanling Meng
  11. Hui Wang
  12. Amy G Wong
  13. Martin T Zanni
  14. C Bruce Verchere
  15. Daniel P Raleigh  Is a corresponding author
  16. Ann Marie Schmidt  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Novo Nordisk, Denmark
  3. Stony Brook University, United States
  4. PhaseTech Spectroscopy, Inc., United States
  5. University of Wisconsin-Madison, United States
  6. University of British Columbia, Canada

Abstract

Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death.

Article and author information

Author details

  1. Andisheh Abedini

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Annette Plesner

    Novo Nordisk, Bagsværd, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Ping Cao

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zachary Ridgway

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jinghua Zhang

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ling-Hsien Tu

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chris T Middleton

    PhaseTech Spectroscopy, Inc., Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Brian Chao

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel J Sartori

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Fanling Meng

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hui Wang

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Amy G Wong

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Martin T Zanni

    Department of Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. C Bruce Verchere

    Child & Family Research Institute and Department of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel P Raleigh

    Department of Chemistry, Stony Brook University, Stony Brook, United States
    For correspondence
    Daniel.Raleigh@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
  16. Ann Marie Schmidt

    Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
    For correspondence
    annmarie.schmidt@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jeffery W Kelly, The Scripps Research Institute, United States

Ethics

Animal experimentation: All procedures were approved by the Institutional Animal Care and Use Committee of New York University Langone Medical Center (NYULMC) and conform to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH) (8th Edition, 2011, ISBN 10: 0-309-15400-6). The Animal Care and Use Program at NYULMC are in full compliance with NIH policy (NYULMC Compliance Number is A3435-01).

Version history

  1. Received: November 12, 2015
  2. Accepted: May 20, 2016
  3. Accepted Manuscript published: May 23, 2016 (version 1)
  4. Accepted Manuscript updated: June 1, 2016 (version 2)
  5. Version of Record published: July 11, 2016 (version 3)

Copyright

© 2016, Abedini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,110
    views
  • 928
    downloads
  • 124
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andisheh Abedini
  2. Annette Plesner
  3. Ping Cao
  4. Zachary Ridgway
  5. Jinghua Zhang
  6. Ling-Hsien Tu
  7. Chris T Middleton
  8. Brian Chao
  9. Daniel J Sartori
  10. Fanling Meng
  11. Hui Wang
  12. Amy G Wong
  13. Martin T Zanni
  14. C Bruce Verchere
  15. Daniel P Raleigh
  16. Ann Marie Schmidt
(2016)
Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics
eLife 5:e12977.
https://doi.org/10.7554/eLife.12977

Share this article

https://doi.org/10.7554/eLife.12977

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.