Abstract

Senescent cells accumulate in fat with aging. We previously found genetic clearance of senescent cells from progeroid INK-ATTAC mice prevents lipodystrophy. Here we show that primary human senescent fat progenitors secrete activin A and directly inhibit adipogenesis in non-senescent progenitors. Blocking activin A partially restored lipid accumulation and expression of key adipogenic markers in differentiating progenitors exposed to senescent cells. Mouse fat tissue activin A increased with aging. Clearing senescent cells from 18-month-old naturally-aged INK-ATTAC mice reduced circulating activin A, blunted fat loss, and enhanced adipogenic transcription factor expression within 3 weeks. JAK inhibitor suppressed senescent cell activin A production and blunted senescent cell-mediated inhibition of adipogenesis. Eight weeks-treatment with ruxolitinib, an FDA-approved JAK1/2 inhibitor, reduced circulating activin A, preserved fat mass, reduced lipotoxicity, and increased insulin sensitivity in 22-month-old mice. Our study indicates targeting senescent cells or their products may alleviate age-related dysfunction of progenitors, adipose tissue, and metabolism.

Article and author information

Author details

  1. Ming Xu

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  2. Allyson K Palmer

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    Allyson K Palmer, This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and is being conducted in compliance with Mayo Clinic Conflict of Interest policies.
  3. Husheng Ding

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  4. Megan M Weivoda

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  5. Tamar Pirtskhalava

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    Tamar Pirtskhalava, This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and is being conducted in compliance with Mayo Clinic Conflict of Interest policies.
  6. Thomas A White

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  7. Anna Sepe

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  8. Kurt O Johnson

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  9. Michael B Stout

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  10. Nino Giorgadze

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    Nino Giorgadze, This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and is being conducted in compliance with Mayo Clinic Conflict of Interest policies.
  11. Michael D Jensen

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  12. Nathan K LeBrasseur

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  13. Tamar Tchkonia

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    Competing interests
    Tamar Tchkonia, This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and is being conducted in compliance with Mayo Clinic Conflict of Interest policies.
  14. James L Kirkland

    Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
    For correspondence
    Kirkland.James@mayo.edu
    Competing interests
    James L Kirkland, This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and is being conducted in compliance with Mayo Clinic Conflict of Interest policies.

Ethics

Animal experimentation: Experimental procedures (A21013, A37715 and A16315) were approved by the IACUC at Mayo Clinic

Human subjects: The protocol (10-005236) was approved by the Mayo Clinic Foundation Institutional Review Board for Human Research. Informed consent and consent to publish was obtained from all human subjects.

Copyright

© 2015, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,310
    views
  • 2,402
    downloads
  • 456
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ming Xu
  2. Allyson K Palmer
  3. Husheng Ding
  4. Megan M Weivoda
  5. Tamar Pirtskhalava
  6. Thomas A White
  7. Anna Sepe
  8. Kurt O Johnson
  9. Michael B Stout
  10. Nino Giorgadze
  11. Michael D Jensen
  12. Nathan K LeBrasseur
  13. Tamar Tchkonia
  14. James L Kirkland
(2015)
Targeting senescent cells enhances adipogenesis and metabolic function in old age
eLife 4:e12997.
https://doi.org/10.7554/eLife.12997

Share this article

https://doi.org/10.7554/eLife.12997

Further reading

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rachael Kuintzle, Leah A Santat, Michael B Elowitz
    Research Article

    The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.