Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition

  1. Corey M Dambacher
  2. Evan J Worden
  3. Mark A Herzik
  4. Andreas Martin
  5. Gabriel C Lander  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. University of California, Berkeley, United States

Abstract

The 26S proteasome is responsible for the selective, ATP-dependent degradation of polyubiquitinated cellular proteins. Removal of ubiquitin chains from targeted substrates at the proteasome is a prerequisite for substrate processing and is accomplished by Rpn11, a deubiquitinase within the 'lid' sub-complex. Prior to the lid's incorporation into the proteasome, Rpn11 deubiquitinase activity is inhibited to prevent unwarranted deubiquitination of polyubiquitinated proteins. Here we present the atomic model of the isolated lid sub-complex, as determined by cryo-electron microscopy at 3.5 Å resolution, revealing how Rpn11 is inhibited through its interaction with a neighboring lid subunit, Rpn5. Through mutagenesis of specific residues, we describe the network of interactions that are required to stabilize this inhibited state. These results provide significant insight into the intricate mechanisms of proteasome assembly, outlining the substantial conformational rearrangements that occur during incorporation of the lid into the 26S holoenzyme, which ultimately activates the deubiquitinase for substrate degradation.

Article and author information

Author details

  1. Corey M Dambacher

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Evan J Worden

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark A Herzik

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andreas Martin

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gabriel C Lander

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    For correspondence
    glander@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sjors HW Scheres, Medical Research Council, United Kingdom

Version history

  1. Received: November 13, 2015
  2. Accepted: January 7, 2016
  3. Accepted Manuscript published: January 8, 2016 (version 1)
  4. Version of Record published: January 28, 2016 (version 2)

Copyright

© 2016, Dambacher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,578
    views
  • 1,172
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Corey M Dambacher
  2. Evan J Worden
  3. Mark A Herzik
  4. Andreas Martin
  5. Gabriel C Lander
(2016)
Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
eLife 5:e13027.
https://doi.org/10.7554/eLife.13027

Share this article

https://doi.org/10.7554/eLife.13027

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.