Abstract

Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli.

Article and author information

Author details

  1. Adam M Corrigan

    Laboratory for Molecular Cell Biology, Division of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Edward Tunnacliffe

    Laboratory for Molecular Cell Biology, Division of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Danielle Cannon

    Laboratory for Molecular Cell Biology, Division of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan R Chubb

    Laboratory for Molecular Cell Biology, Division of Cell and Developmental Biology, University College London, London, United Kingdom
    For correspondence
    j.chubb@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Corrigan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,342
    views
  • 1,799
    downloads
  • 157
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam M Corrigan
  2. Edward Tunnacliffe
  3. Danielle Cannon
  4. Jonathan R Chubb
(2016)
A continuum model of transcriptional bursting
eLife 5:e13051.
https://doi.org/10.7554/eLife.13051

Share this article

https://doi.org/10.7554/eLife.13051

Further reading

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.