α8β1 integrin regulates nutrient absorption through an Mfge8-PTEN dependent mechanism

  1. Amin Khalifeh-Soltani
  2. Arnold Ha
  3. Michael J Podolsky
  4. Donald A McCarthy
  5. William McKleroy
  6. Saeedeh Azary
  7. Stephen Sakuma
  8. Kevin M Tharp
  9. Nanyan Wu
  10. Yasuyuki Yokosaki
  11. Daniel O Hart
  12. Andreas Stahl
  13. Kamran Atabai  Is a corresponding author
  1. University of California, San Francisco, United States
  2. University of California, Berkeley, United States
  3. University Of California, San Francisco, United States
  4. Hiroshima University, Japan

Abstract

Coordinated gastrointestinal smooth muscle contraction is critical for proper nutrient absorption and is altered in a number of medical disorders. In this work, we demonstrate a critical role for the RGD-binding integrin α8β1 in promoting nutrient absorption through regulation of gastrointestinal motility. Smooth muscle-specific deletion and antibody blockade of α8 in mice result in enhanced gastric antral smooth muscle contraction, more rapid gastric emptying, and more rapid transit of food through the small intestine leading to malabsorption of dietary fats and carbohydrates as well as protection from weight gain in a diet-induced model of obesity. Mechanistically, ligation of α8β1 by the milk protein Mfge8 reduces antral smooth muscle contractile force by preventing RhoA activation through a PTEN-dependent mechanism. Collectively, our results identify a role for α8β1 in regulating gastrointestinal motility and identify α8 as a potential target for disorders characterized by hypo- or hyper-motility.

Article and author information

Author details

  1. Amin Khalifeh-Soltani

    Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arnold Ha

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael J Podolsky

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Donald A McCarthy

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William McKleroy

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Saeedeh Azary

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephen Sakuma

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kevin M Tharp

    Metabolic Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nanyan Wu

    Lung Biology Center, University Of California, San Francisco, San Fransico, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yasuyuki Yokosaki

    Cell-Matrix Frontier Laboratory, Biomedical Research Unit, Health Administration Center, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel O Hart

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Andreas Stahl

    Metabolic Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Kamran Atabai

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    kamran.atabai@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were approved by the UCSF Institutional Animal Care and Use Committee in adherence to NIH guidelines and policies.(#AN109941-01A)

Copyright

© 2016, Khalifeh-Soltani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,649
    views
  • 358
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amin Khalifeh-Soltani
  2. Arnold Ha
  3. Michael J Podolsky
  4. Donald A McCarthy
  5. William McKleroy
  6. Saeedeh Azary
  7. Stephen Sakuma
  8. Kevin M Tharp
  9. Nanyan Wu
  10. Yasuyuki Yokosaki
  11. Daniel O Hart
  12. Andreas Stahl
  13. Kamran Atabai
(2016)
α8β1 integrin regulates nutrient absorption through an Mfge8-PTEN dependent mechanism
eLife 5:e13063.
https://doi.org/10.7554/eLife.13063

Share this article

https://doi.org/10.7554/eLife.13063

Further reading

    1. Cell Biology
    Peipei Xu, Rui Zhang ... Wenxiang Meng
    Research Article

    The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.

    1. Cell Biology
    Sakshi Shambhavi, Sudipta Mondal ... Rajan Sankaranarayanan
    Research Article

    Diacylglycerols (DAGs) are used for metabolic purposes and are tightly regulated secondary lipid messengers in eukaryotes. DAG subspecies with different fatty-acyl chains are proposed to be involved in the activation of distinct PKC isoforms, resulting in diverse physiological outcomes. However, the molecular players and the regulatory origin for fine-tuning the PKC pathway are unknown. Here, we show that Dip2, a conserved DAG regulator across Fungi and Animalia, has emerged as a modulator of PKC signalling in yeast. Dip2 maintains the level of a specific DAG subpopulation, required for the activation of PKC-mediated cell wall integrity pathway. Interestingly, the canonical DAG-metabolism pathways, being promiscuous, are decoupled from PKC signalling. We demonstrate that these DAG subspecies are sourced from a phosphatidylinositol pool generated by the acyl-chain remodelling pathway. Furthermore, we provide insights into the intimate coevolutionary relationship between the regulator (Dip2) and the effector (PKC) of DAG-based signalling. Hence, our study underscores the establishment of Dip2-PKC axis about 1.2 billion years ago in Opisthokonta, which marks the rooting of the first specific DAG-based signalling module of eukaryotes.