Distributed task-specific processing of somatosensory feedback for voluntary motor control

  1. Mohsen Omrani
  2. Chantelle D Murnaghan
  3. J Andrew Pruszynski
  4. Stephen H Scott  Is a corresponding author
  1. Queen's Univertsity, Canada
  2. Queen's University, Canada
  3. Western University, Canada

Abstract

Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25ms of a mechanical disturbance applied to the monkey's arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150ms post-perturbation. Our findings highlight broad parietofrontal circuits provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors.

Article and author information

Author details

  1. Mohsen Omrani

    Centre for Neuroscience Studies, Queen's Univertsity, Kingston, Canada
    Competing interests
    No competing interests declared.
  2. Chantelle D Murnaghan

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    No competing interests declared.
  3. J Andrew Pruszynski

    Physiology and Pharmacology, Psychology, Western University, London, Canada
    Competing interests
    No competing interests declared.
  4. Stephen H Scott

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    For correspondence
    steve.scott@queensu.ca
    Competing interests
    Stephen H Scott, SHS is a Co-Founder and Chief Scientific Officer of BKIN Technologies that commercializes the robotic technology used in this study.

Ethics

Animal experimentation: The Queen's University Animal Care Committee approved all experimental procedures. (Protocol 1348)

Copyright

© 2016, Omrani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,603
    views
  • 536
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohsen Omrani
  2. Chantelle D Murnaghan
  3. J Andrew Pruszynski
  4. Stephen H Scott
(2016)
Distributed task-specific processing of somatosensory feedback for voluntary motor control
eLife 5:e13141.
https://doi.org/10.7554/eLife.13141

Share this article

https://doi.org/10.7554/eLife.13141

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.