Distributed task-specific processing of somatosensory feedback for voluntary motor control

  1. Mohsen Omrani
  2. Chantelle D Murnaghan
  3. J Andrew Pruszynski
  4. Stephen H Scott  Is a corresponding author
  1. Queen's Univertsity, Canada
  2. Queen's University, Canada
  3. Western University, Canada


Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25ms of a mechanical disturbance applied to the monkey's arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150ms post-perturbation. Our findings highlight broad parietofrontal circuits provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors.

Article and author information

Author details

  1. Mohsen Omrani

    Centre for Neuroscience Studies, Queen's Univertsity, Kingston, Canada
    Competing interests
    No competing interests declared.
  2. Chantelle D Murnaghan

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    No competing interests declared.
  3. J Andrew Pruszynski

    Physiology and Pharmacology, Psychology, Western University, London, Canada
    Competing interests
    No competing interests declared.
  4. Stephen H Scott

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    For correspondence
    Competing interests
    Stephen H Scott, SHS is a Co-Founder and Chief Scientific Officer of BKIN Technologies that commercializes the robotic technology used in this study.


Animal experimentation: The Queen's University Animal Care Committee approved all experimental procedures. (Protocol 1348)

Reviewing Editor

  1. Rui M Costa, Fundação Champalimaud, Portugal

Publication history

  1. Received: November 20, 2015
  2. Accepted: April 13, 2016
  3. Accepted Manuscript published: April 14, 2016 (version 1)
  4. Version of Record published: May 19, 2016 (version 2)


© 2016, Omrani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,337
    Page views
  • 507
  • 52

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohsen Omrani
  2. Chantelle D Murnaghan
  3. J Andrew Pruszynski
  4. Stephen H Scott
Distributed task-specific processing of somatosensory feedback for voluntary motor control
eLife 5:e13141.

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Matthew Roberts, Julia Ogden ... Carlos Lopez-Garcia
    Tools and Resources Updated

    Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis that lacks adequate therapies and actionable targets. This disease is characterized by a sequence of low- and high-grade preinvasive stages with increasing probability of malignant progression. Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to design new methods of early detection and prevention, and to identify the molecular processes that are key for malignant progression. To facilitate this research, we have designed XTABLE (Exploring Transcriptomes of Bronchial Lesions), an open-source application that integrates the most extensive transcriptomic databases of PMLs published so far. With this tool, users can stratify samples using multiple parameters and interrogate PML biology in multiple manners, such as two- and multiple-group comparisons, interrogation of genes of interests, and transcriptional signatures. Using XTABLE, we have carried out a comparative study of the potential role of chromosomal instability scores as biomarkers of PML progression and mapped the onset of the most relevant LUSC pathways to the sequence of LUSC developmental stages. XTABLE will critically facilitate new research for the identification of early detection biomarkers and acquire a better understanding of the LUSC precancerous stages.

    1. Computational and Systems Biology
    2. Neuroscience
    Rebecca Elizabeth Carlisle, Arthur D Kuo
    Research Article Updated

    Humans make a number of choices when they walk, such as how fast and for how long. The preferred steady walking speed seems chosen to minimize energy expenditure per distance traveled. But the speed of actual walking bouts is not only steady, but rather a time-varying trajectory, which can also be modulated by task urgency or an individual’s movement vigor. Here we show that speed trajectories and durations of human walking bouts are explained better by an objective to minimize Energy and Time, meaning the total work or energy to reach destination, plus a cost proportional to bout duration. Applied to a computational model of walking dynamics, this objective predicts dynamic speed vs. time trajectories with inverted U shapes. Model and human experiment (N=10) show that shorter bouts are unsteady and dominated by the time and effort of accelerating, and longer ones are steadier and faster and dominated by steady-state time and effort. Individual-dependent vigor may be characterized by the energy one is willing to spend to save a unit of time, which explains why some may walk faster than others, but everyone may have similar-shaped trajectories due to similar walking dynamics. Tradeoffs between energy and time costs can predict transient, steady, and vigor-related aspects of walking.