Distributed task-specific processing of somatosensory feedback for voluntary motor control

  1. Mohsen Omrani
  2. Chantelle D Murnaghan
  3. J Andrew Pruszynski
  4. Stephen H Scott  Is a corresponding author
  1. Queen's Univertsity, Canada
  2. Queen's University, Canada
  3. Western University, Canada

Abstract

Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25ms of a mechanical disturbance applied to the monkey's arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150ms post-perturbation. Our findings highlight broad parietofrontal circuits provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors.

Article and author information

Author details

  1. Mohsen Omrani

    Centre for Neuroscience Studies, Queen's Univertsity, Kingston, Canada
    Competing interests
    No competing interests declared.
  2. Chantelle D Murnaghan

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    No competing interests declared.
  3. J Andrew Pruszynski

    Physiology and Pharmacology, Psychology, Western University, London, Canada
    Competing interests
    No competing interests declared.
  4. Stephen H Scott

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    For correspondence
    steve.scott@queensu.ca
    Competing interests
    Stephen H Scott, SHS is a Co-Founder and Chief Scientific Officer of BKIN Technologies that commercializes the robotic technology used in this study.

Ethics

Animal experimentation: The Queen's University Animal Care Committee approved all experimental procedures. (Protocol 1348)

Copyright

© 2016, Omrani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,686
    views
  • 548
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohsen Omrani
  2. Chantelle D Murnaghan
  3. J Andrew Pruszynski
  4. Stephen H Scott
(2016)
Distributed task-specific processing of somatosensory feedback for voluntary motor control
eLife 5:e13141.
https://doi.org/10.7554/eLife.13141

Share this article

https://doi.org/10.7554/eLife.13141