Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella

  1. Pablo Sartori
  2. Veikko F Geyer
  3. Andre Scholich
  4. Frank Jülicher
  5. Jonathon Howard  Is a corresponding author
  1. Max Planck Institute for the Physics of Complex Systems, Germany
  2. Yale University, United States

Abstract

Cilia and flagella are model systems for studying how mechanical forces control morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat.

Article and author information

Author details

  1. Pablo Sartori

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  2. Veikko F Geyer

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Andre Scholich

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  4. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.
  5. Jonathon Howard

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    For correspondence
    jonathon.howard@yale.edu
    Competing interests
    No competing interests declared.

Copyright

© 2016, Sartori et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,541
    views
  • 820
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pablo Sartori
  2. Veikko F Geyer
  3. Andre Scholich
  4. Frank Jülicher
  5. Jonathon Howard
(2016)
Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella
eLife 5:e13258.
https://doi.org/10.7554/eLife.13258

Share this article

https://doi.org/10.7554/eLife.13258

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Fridtjof Brauns, Nikolas H Claussen ... Boris I Shraiman
    Research Article

    Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.

    1. Cell Biology
    2. Physics of Living Systems
    Pyae Hein Htet, Edward Avezov, Eric Lauga
    Research Article

    The endoplasmic reticulum (ER), the largest cellular compartment, harbours the machinery for the biogenesis of secretory proteins and lipids, calcium storage/mobilisation, and detoxification. It is shaped as layered membranous sheets interconnected with a network of tubules extending throughout the cell. Understanding the influence of the ER morphology dynamics on molecular transport may offer clues to rationalising neuro-pathologies caused by ER morphogen mutations. It remains unclear, however, how the ER facilitates its intra-luminal mobility and homogenises its content. It has been recently proposed that intra-luminal transport may be enabled by active contractions of ER tubules. To surmount the barriers to empirical studies of the minuscule spatial and temporal scales relevant to ER nanofluidics, here we exploit the principles of viscous fluid dynamics to generate a theoretical physical model emulating in silico the content motion in actively contracting nanoscopic tubular networks. The computational model reveals the luminal particle speeds, and their impact in facilitating active transport, of the active contractile behaviour of the different ER components along various time–space parameters. The results of the model indicate that reproducing transport with velocities similar to those reported experimentally in single-particle tracking would require unrealistically high values of tubule contraction site length and rate. Considering further nanofluidic scenarios, we show that width contractions of the ER’s flat domains (perinuclear sheets) generate local flows with only a short-range effect on luminal transport. Only contractions of peripheral sheets can reproduce experimental measurements, provided they are able to contract fast enough.