Pentagone internalises glypicans to fine-tune multiple signalling pathways

Abstract

Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated.

Article and author information

Author details

  1. Mark Norman

    Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Robin Vuilleumier

    Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Springhorn

    Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer Gawlik

    Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Giorgos Pyrowolakis

    Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    For correspondence
    g.pyrowolakis@biologie.uni-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Hugo J Bellen, Howard Hughes Medical Institute, Baylor College of Medicine, United States

Version history

  1. Received: November 24, 2015
  2. Accepted: June 7, 2016
  3. Accepted Manuscript published: June 8, 2016 (version 1)
  4. Accepted Manuscript updated: June 8, 2016 (version 2)
  5. Version of Record published: June 28, 2016 (version 3)

Copyright

© 2016, Norman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,372
    views
  • 556
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark Norman
  2. Robin Vuilleumier
  3. Alexander Springhorn
  4. Jennifer Gawlik
  5. Giorgos Pyrowolakis
(2016)
Pentagone internalises glypicans to fine-tune multiple signalling pathways
eLife 5:e13301.
https://doi.org/10.7554/eLife.13301

Share this article

https://doi.org/10.7554/eLife.13301

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Cell Biology
    2. Neuroscience
    Georg Kislinger, Gunar Fabig ... Martina Schifferer
    Tools and Resources

    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed ‘ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.