Pentagone internalises glypicans to fine-tune multiple signalling pathways

Abstract

Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated.

Article and author information

Author details

  1. Mark Norman

    Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Robin Vuilleumier

    Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Springhorn

    Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer Gawlik

    Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Giorgos Pyrowolakis

    Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
    For correspondence
    g.pyrowolakis@biologie.uni-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Norman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,414
    views
  • 560
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark Norman
  2. Robin Vuilleumier
  3. Alexander Springhorn
  4. Jennifer Gawlik
  5. Giorgos Pyrowolakis
(2016)
Pentagone internalises glypicans to fine-tune multiple signalling pathways
eLife 5:e13301.
https://doi.org/10.7554/eLife.13301

Share this article

https://doi.org/10.7554/eLife.13301

Further reading

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.

    1. Cell Biology
    Erli Jin, Jennifer K Briggs ... Matthew J Merrins
    Research Article

    Oscillations in insulin secretion, driven by islet Ca2+ waves, are crucial for glycemic control. Prior studies, performed with single-plane imaging, suggest that subpopulations of electrically coupled β-cells have privileged roles in leading and coordinating the propagation of Ca2+ waves. Here, we used three-dimensional (3D) light-sheet imaging to analyze the location and Ca2+ activity of single β-cells within the entire islet at >2 Hz. In contrast with single-plane studies, 3D network analysis indicates that the most highly synchronized β-cells are located at the islet center, and remain regionally but not cellularly stable between oscillations. This subpopulation, which includes ‘hub cells’, is insensitive to changes in fuel metabolism induced by glucokinase and pyruvate kinase activation. β-Cells that initiate the Ca2+ wave (leaders) are located at the islet periphery, and strikingly, change their identity over time via rotations in the wave axis. Glucokinase activation, which increased oscillation period, reinforced leader cells and stabilized the wave axis. Pyruvate kinase activation, despite increasing oscillation frequency, had no effect on leader cells, indicating the wave origin is patterned by fuel input. These findings emphasize the stochastic nature of the β-cell subpopulations that control Ca2+ oscillations and identify a role for glucokinase in spatially patterning ‘leader’ β-cells.