Mixed-mode oscillations and population bursting in the pre-Bӧtzinger complex

  1. Bartholomew J Bacak  Is a corresponding author
  2. Taegyo Kim
  3. Jeffrey C Smith
  4. Jonathan E Rubin
  5. Ilya A Rybak
  1. Drexel University College of Medicine, United States
  2. National Institutes of Health, United States
  3. University of Pittsburgh, United States

Abstract

This study focuses on computational and theoretical investigations of neuronal activity arising in the pre-Bӧtzinger complex (pre-BӧtC), a medullary region generating the inspiratory phase of breathing in mammals. A progressive increase of neuronal excitability in medullary slices containing the pre-BӧtC produces mixed-mode oscillations (MMOs) characterized by large amplitude population bursts alternating with a series of small amplitude bursts. Using two different computational models, we demonstrate that MMOs emerge within a heterogeneous excitatory neural network because of progressive neuronal recruitment and synchronization. The MMO pattern depends on the distributed neuronal excitability, the density and weights of network interconnections, and the cellular properties underlying endogenous bursting. Critically, the latter should provide a reduction of spiking frequency within neuronal bursts with increasing burst frequency and a dependence of the after-burst recovery period on burst amplitude. Our study highlights a novel mechanism by which heterogeneity naturally leads to complex dynamics in rhythmic neuronal populations.

Article and author information

Author details

  1. Bartholomew J Bacak

    Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
    For correspondence
    BartBacak@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Taegyo Kim

    Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeffrey C Smith

    Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan E Rubin

    Department of Mathematics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ilya A Rybak

    Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jan-Marino Ramirez, Seattle Children's Research Institute and University of Washington, United States

Publication history

  1. Received: November 29, 2015
  2. Accepted: March 11, 2016
  3. Accepted Manuscript published: March 14, 2016 (version 1)
  4. Version of Record published: April 21, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,564
    Page views
  • 393
    Downloads
  • 36
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bartholomew J Bacak
  2. Taegyo Kim
  3. Jeffrey C Smith
  4. Jonathan E Rubin
  5. Ilya A Rybak
(2016)
Mixed-mode oscillations and population bursting in the pre-Bӧtzinger complex
eLife 5:e13403.
https://doi.org/10.7554/eLife.13403

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Rebecca Elizabeth Carlisle, Arthur D Kuo
    Research Article Updated

    Humans make a number of choices when they walk, such as how fast and for how long. The preferred steady walking speed seems chosen to minimize energy expenditure per distance traveled. But the speed of actual walking bouts is not only steady, but rather a time-varying trajectory, which can also be modulated by task urgency or an individual’s movement vigor. Here we show that speed trajectories and durations of human walking bouts are explained better by an objective to minimize Energy and Time, meaning the total work or energy to reach destination, plus a cost proportional to bout duration. Applied to a computational model of walking dynamics, this objective predicts dynamic speed vs. time trajectories with inverted U shapes. Model and human experiment (N=10) show that shorter bouts are unsteady and dominated by the time and effort of accelerating, and longer ones are steadier and faster and dominated by steady-state time and effort. Individual-dependent vigor may be characterized by the energy one is willing to spend to save a unit of time, which explains why some may walk faster than others, but everyone may have similar-shaped trajectories due to similar walking dynamics. Tradeoffs between energy and time costs can predict transient, steady, and vigor-related aspects of walking.

    1. Computational and Systems Biology
    Robert West, Hadrien Delattre ... Orkun S Soyer
    Research Article Updated

    Cycling of co-substrates, whereby a metabolite is converted among alternate forms via different reactions, is ubiquitous in metabolism. Several cycled co-substrates are well known as energy and electron carriers (e.g. ATP and NAD(P)H), but there are also other metabolites that act as cycled co-substrates in different parts of central metabolism. Here, we develop a mathematical framework to analyse the effect of co-substrate cycling on metabolic flux. In the cases of a single reaction and linear pathways, we find that co-substrate cycling imposes an additional flux limit on a reaction, distinct to the limit imposed by the kinetics of the primary enzyme catalysing that reaction. Using analytical methods, we show that this additional limit is a function of the total pool size and turnover rate of the cycled co-substrate. Expanding from this insight and using simulations, we show that regulation of these two parameters can allow regulation of flux dynamics in branched and coupled pathways. To support these theoretical insights, we analysed existing flux measurements and enzyme levels from the central carbon metabolism and identified several reactions that could be limited by the dynamics of co-substrate cycling. We discuss how the limitations imposed by co-substrate cycling provide experimentally testable hypotheses on specific metabolic phenotypes. We conclude that measuring and controlling co-substrate dynamics is crucial for understanding and engineering metabolic fluxes in cells.