1. Neuroscience
Download icon

Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance

  1. Felix Siebenhühner
  2. Sheng H Wang
  3. J Matias Palva
  4. Satu Palva  Is a corresponding author
  1. University of Helsinki, Finland
Research Article
  • Cited 39
  • Views 2,082
  • Annotations
Cite this article as: eLife 2016;5:e13451 doi: 10.7554/eLife.13451

Abstract

Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta/gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.

Article and author information

Author details

  1. Felix Siebenhühner

    Neuroscience Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  2. Sheng H Wang

    Neuroscience Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. J Matias Palva

    Neuroscience Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Satu Palva

    Neuroscience Center, University of Helsinki, Helsinki, Finland
    For correspondence
    satu.palva@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9496-7391

Funding

Suomen Akatemia (SA1126927, SA266402,)

  • Satu Palva

Helsinki University Research Grants (788/51/2010)

  • Satu Palva

Brain and Mind doctoral program

  • Felix Siebenhühner

Suomen Akatemia (SA253130, SA281414, SA256472)

  • J Matias Palva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the ethical committee of Helsinki University Central hospital and was performed according to the Declaration of Helsinki. Written informed consent was obtained from each subject prior to the experiment.

Reviewing Editor

  1. Maurizio Corbetta, Washington University, United States

Publication history

  1. Received: December 1, 2015
  2. Accepted: September 24, 2016
  3. Accepted Manuscript published: September 26, 2016 (version 1)
  4. Version of Record published: October 19, 2016 (version 2)

Copyright

© 2016, Siebenhühner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,082
    Page views
  • 641
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Chen Chen et al.
    Research Article

    While animals track or search for targets, sensory organs make small unexplained movements on top of the primary task-related motions. While multiple theories for these movements exist—in that they support infotaxis, gain adaptation, spectral whitening, and high-pass filtering—predicted trajectories show poor fit to measured trajectories. We propose a new theory for these movements called energy-constrained proportional betting, where the probability of moving to a location is proportional to an expectation of how informative it will be balanced against the movement’s predicted energetic cost. Trajectories generated in this way show good agreement with measured trajectories of fish tracking an object using electrosense, a mammal and an insect localizing an odor source, and a moth tracking a flower using vision. Our theory unifies the metabolic cost of motion with information theory. It predicts sense organ movements in animals and can prescribe sensor motion for robots to enhance performance.

    1. Ecology
    2. Neuroscience
    Felix JH Hol et al.
    Tools and Resources

    Female mosquitoes need a blood meal to reproduce, and in obtaining this essential nutrient they transmit deadly pathogens. Although crucial for the spread of mosquito-borne diseases, blood feeding remains poorly understood due to technological limitations. Indeed, studies often expose human subjects to assess biting behavior. Here, we present the biteOscope, a device that attracts mosquitoes to a host mimic which they bite to obtain an artificial blood meal. The host mimic is transparent, allowing high-resolution imaging of the feeding mosquito. Using machine learning we extract detailed behavioral statistics describing the locomotion, pose, biting, and feeding dynamics of Aedes aegypti, Aedes albopictus, Anopheles stephensi, and Anopheles coluzzii. In addition to characterizing behavioral patterns, we discover that the common insect repellent DEET repels Anopheles coluzzii upon contact with their legs. The biteOscope provides a new perspective on mosquito blood feeding, enabling the high-throughput quantitative characterization of this lethal behavior.