A mammalian enhancer trap resource for discovering and manipulating neuronal cell types

  1. Yasuyuki Shima
  2. Ken Sugino
  3. Chris Hempel
  4. Masami Shima
  5. Praveen Taneja
  6. James B Bullis
  7. Sonam Mehta
  8. Carlos Lois
  9. Sacha B Nelson  Is a corresponding author
  1. Brandeis University, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. Galenea Corporation, United States
  4. California Institute of Technology, United States

Abstract

There is a continuing need for driver strains to enable cell type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (enhancertrap.bio.brandeis.edu).

Article and author information

Author details

  1. Yasuyuki Shima

    Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  2. Ken Sugino

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Chris Hempel

    Galenea Corporation, Wakefield, United States
    Competing interests
    No competing interests declared.
  4. Masami Shima

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  5. Praveen Taneja

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  6. James B Bullis

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  7. Sonam Mehta

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  8. Carlos Lois

    Division of Biology and Biological Engineering Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  9. Sacha B Nelson

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    For correspondence
    nelson@brandeis.edu
    Competing interests
    Sacha B Nelson, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#14004) of Brandeis University. All surgery was performed under ketamine and xylazine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Shima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,410
    views
  • 1,176
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasuyuki Shima
  2. Ken Sugino
  3. Chris Hempel
  4. Masami Shima
  5. Praveen Taneja
  6. James B Bullis
  7. Sonam Mehta
  8. Carlos Lois
  9. Sacha B Nelson
(2016)
A mammalian enhancer trap resource for discovering and manipulating neuronal cell types
eLife 5:e13503.
https://doi.org/10.7554/eLife.13503

Share this article

https://doi.org/10.7554/eLife.13503

Further reading

    1. Neuroscience
    Magdalena Ziółkowska, Narges Sotoudeh ... Kasia Radwanska
    Research Article

    The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE). Here, we reveal that the RE→dCA1 pathway contributes to the extinction of contextual fear by affecting CFE-induced molecular remodeling of excitatory synapses. Anatomical tracing and chemogenetic manipulation in mice demonstrate that RE neurons form synapses and regulate synaptic transmission in the stratum oriens (SO) and lacunosum-moleculare (SLM) of the dCA1 area, but not in the stratum radiatum (SR). We also observe CFE-specific structural changes of excitatory synapses and expression of the synaptic scaffold protein, PSD-95, in both strata innervated by RE, but not in SR. Interestingly, only the changes in SLM are specific for the dendrites innervated by RE. To further support the role of the RE→dCA1 projection in CFE, we demonstrate that brief chemogenetic inhibition of the RE→dCA1 pathway during a CFE session persistently impairs the formation of CFE memory and CFE-induced changes of PSD-95 levels in SLM. Thus, our data indicate that RE participates in CFE by regulating CFE-induced molecular remodeling of dCA1 synapses.

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.