A mammalian enhancer trap resource for discovering and manipulating neuronal cell types

  1. Yasuyuki Shima
  2. Ken Sugino
  3. Chris Hempel
  4. Masami Shima
  5. Praveen Taneja
  6. James B Bullis
  7. Sonam Mehta
  8. Carlos Lois
  9. Sacha B Nelson  Is a corresponding author
  1. Brandeis University, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. Galenea Corporation, United States
  4. California Institute of Technology, United States

Abstract

There is a continuing need for driver strains to enable cell type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (enhancertrap.bio.brandeis.edu).

Article and author information

Author details

  1. Yasuyuki Shima

    Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  2. Ken Sugino

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Chris Hempel

    Galenea Corporation, Wakefield, United States
    Competing interests
    No competing interests declared.
  4. Masami Shima

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  5. Praveen Taneja

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  6. James B Bullis

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  7. Sonam Mehta

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  8. Carlos Lois

    Division of Biology and Biological Engineering Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  9. Sacha B Nelson

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    For correspondence
    nelson@brandeis.edu
    Competing interests
    Sacha B Nelson, Reviewing editor, eLife.

Reviewing Editor

  1. Liqun Luo, Howard Hughes Medical Institute, Stanford University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#14004) of Brandeis University. All surgery was performed under ketamine and xylazine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: December 3, 2015
  2. Accepted: March 18, 2016
  3. Accepted Manuscript published: March 21, 2016 (version 1)
  4. Accepted Manuscript updated: April 6, 2016 (version 2)
  5. Version of Record published: April 21, 2016 (version 3)

Copyright

© 2016, Shima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,305
    views
  • 1,162
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasuyuki Shima
  2. Ken Sugino
  3. Chris Hempel
  4. Masami Shima
  5. Praveen Taneja
  6. James B Bullis
  7. Sonam Mehta
  8. Carlos Lois
  9. Sacha B Nelson
(2016)
A mammalian enhancer trap resource for discovering and manipulating neuronal cell types
eLife 5:e13503.
https://doi.org/10.7554/eLife.13503

Share this article

https://doi.org/10.7554/eLife.13503

Further reading

    1. Neuroscience
    John J Maurer, Alexandra Lin ... Shinjae Chung
    Research Article

    Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.

    1. Neuroscience
    Zilu Liang, Simeng Wu ... Chao Liu
    Research Article

    People form impressions about others during daily social encounters and infer personality traits from others' behaviors. Such trait inference is thought to rely on two universal dimensions: competence and warmth. These two dimensions can be used to construct a ‘social cognitive map’ organizing massive information obtained from social encounters efficiently. Originating from spatial cognition, the neural codes supporting the representation and navigation of spatial cognitive maps have been widely studied. Recent studies suggest similar neural mechanism subserves the map-like architecture in social cognition as well. Here we investigated how spatial codes operate beyond the physical environment and support the representation and navigation of social cognitive map. We designed a social value space defined by two dimensions of competence and warmth. Behaviorally, participants were able to navigate to a learned location from random starting locations in this abstract social space. At the neural level, we identified the representation of distance in the precuneus, fusiform gyrus, and middle occipital gyrus. We also found partial evidence of grid-like representation patterns in the medial prefrontal cortex and entorhinal cortex. Moreover, the intensity of grid-like response scaled with the performance of navigating in social space and social avoidance trait scores. Our findings suggest a neurocognitive mechanism by which social information can be organized into a structured representation, namely cognitive map and its relevance to social well-being.