A mammalian enhancer trap resource for discovering and manipulating neuronal cell types

  1. Yasuyuki Shima
  2. Ken Sugino
  3. Chris Martin Hempel
  4. Masami Shima
  5. Praveen Taneja
  6. James B Bullis
  7. Sonam Mehta
  8. Carlos Lois
  9. Sacha B Nelson  Is a corresponding author
  1. Brandeis University, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. Galenea Corporation, United States
  4. California Institute of Technology, United States

Abstract

There is a continuing need for driver strains to enable cell type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (enhancertrap.bio.brandeis.edu).

Article and author information

Author details

  1. Yasuyuki Shima

    Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  2. Ken Sugino

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Chris Martin Hempel

    Galenea Corporation, Wakefield, United States
    Competing interests
    No competing interests declared.
  4. Masami Shima

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  5. Praveen Taneja

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  6. James B Bullis

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  7. Sonam Mehta

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  8. Carlos Lois

    Division of Biology and Biological Engineering Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  9. Sacha B Nelson

    Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    For correspondence
    nelson@brandeis.edu
    Competing interests
    Sacha B Nelson, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#14004) of Brandeis University. All surgery was performed under ketamine and xylazine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Shima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,428
    views
  • 1,178
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasuyuki Shima
  2. Ken Sugino
  3. Chris Martin Hempel
  4. Masami Shima
  5. Praveen Taneja
  6. James B Bullis
  7. Sonam Mehta
  8. Carlos Lois
  9. Sacha B Nelson
(2016)
A mammalian enhancer trap resource for discovering and manipulating neuronal cell types
eLife 5:e13503.
https://doi.org/10.7554/eLife.13503

Share this article

https://doi.org/10.7554/eLife.13503

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Yi-Yun Ho, Qiuwei Yang ... Melissa R Warden
    Research Article

    The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.