An ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by patched/Ptch1

  1. David S Lorberbaum
  2. Andrea I Ramos
  3. Kevin A Peterson
  4. Brandon S Carpenter
  5. David S Parker
  6. Sandip De
  7. Lauren E Hillers
  8. Victoria M Blake
  9. Yuichi Nishi
  10. Matthew R McFarlane
  11. Ason CY Chiang
  12. Judith A Kassis
  13. Benjamin L Allen
  14. Andrew P McMahon
  15. Scott Barolo  Is a corresponding author
  1. University of Michigan Medical School, United States
  2. Harvard University, United States
  3. National Institutes of Health, United States
  4. University of Southern California Keck School of Medicine, United States
  5. Keck School of Medicine of the University of Southern California, United States

Abstract

The Hedgehog signaling pathway is part of the ancient developmental-evolutionary animal toolkit. Frequently co-opted to pattern new structures, the pathway is conserved among eumetazoans yet flexible and pleiotropic in its effects. The Hedgehog receptor, Patched, is transcriptionally activated by Hedgehog, providing essential negative feedback in all tissues. Our locus-wide dissections of the cis-regulatory landscapes of fly patched and mouse Ptch1 reveal abundant, diverse enhancers with stage- and tissue-specific expression patterns. The seemingly simple, constitutive Hedgehog response of patched/Ptch1 is driven by a complex regulatory architecture, with batteries of context-specific enhancers engaged in promoter-specific interactions to tune signaling individually in each tissue, without disturbing patterning elsewhere. This structure-one of the oldest cis-regulatory features discovered in animal genomes-explains how patched/Ptch1 can drive dramatic adaptations in animal morphology while maintaining its essential core function. It may also suggest a general model for the evolutionary flexibility of conserved regulators and pathways.

Article and author information

Author details

  1. David S Lorberbaum

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea I Ramos

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kevin A Peterson

    Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brandon S Carpenter

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David S Parker

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sandip De

    Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lauren E Hillers

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Victoria M Blake

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuichi Nishi

    Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthew R McFarlane

    Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ason CY Chiang

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Judith A Kassis

    Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Benjamin L Allen

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrew P McMahon

    Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Biology, Keck School of Medicine of the University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Scott Barolo

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    For correspondence
    sbarolo@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Janet Rossant, University of Toronto, Canada

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and with the institutional animal care protocols of Harvard University and The Jackson Laboratories, where the animal experimentation was performed.Animal husbandry and all experiments were performed in accordance with the National Institute of Health guidelines and the Institutional Animal Care and Use Committee of the University of Southern California (protocol #11867).

Version history

  1. Received: December 4, 2015
  2. Accepted: May 3, 2016
  3. Accepted Manuscript published: May 5, 2016 (version 1)
  4. Version of Record published: May 31, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,072
    views
  • 657
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David S Lorberbaum
  2. Andrea I Ramos
  3. Kevin A Peterson
  4. Brandon S Carpenter
  5. David S Parker
  6. Sandip De
  7. Lauren E Hillers
  8. Victoria M Blake
  9. Yuichi Nishi
  10. Matthew R McFarlane
  11. Ason CY Chiang
  12. Judith A Kassis
  13. Benjamin L Allen
  14. Andrew P McMahon
  15. Scott Barolo
(2016)
An ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by patched/Ptch1
eLife 5:e13550.
https://doi.org/10.7554/eLife.13550

Share this article

https://doi.org/10.7554/eLife.13550

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.