1. Neuroscience
Download icon

Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments

  1. Subhojit Chakraborty
  2. Nils Kolling
  3. Mark E Walton
  4. Anna S Mitchell  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Oxford, United Kingdom
  3. Oxford University, United Kingdom
Research Article
  • Cited 29
  • Views 2,387
  • Annotations
Cite this article as: eLife 2016;5:e13588 doi: 10.7554/eLife.13588

Abstract

Adaptive decision-making uses information gained when exploring alternative options to decide whether to update the current choice strategy. Magnocellular mediodorsal thalamus (MDmc) supports adaptive decision-making, but its causal contribution is not well understood. Monkeys with excitotoxic MDmc damage were tested on probabilistic three-choice decision-making tasks. They could learn and track the changing values in object-reward associations, but they were severely impaired at updating choices after reversals in reward contingencies or when there were multiple options associated with reward. These deficits were not caused by perseveration or insensitivity to negative feedback though. Instead, monkeys with MDmc lesions exhibited an inability to use reward to promote choice repetition after switching to an alternative option due to a diminished influence of recent past choices and the last outcome to guide future behavior. Together, these data suggest MDmc allows for the rapid discovery and persistence with rewarding options, particularly in uncertain or changing environments.

Article and author information

Author details

  1. Subhojit Chakraborty

    Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Nils Kolling

    Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark E Walton

    Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna S Mitchell

    Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
    For correspondence
    anna.mitchell@psy.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experimental procedures were performed in compliance with the United Kingdom Animals (Scientific Procedures) Act of 1986. A Home Office (UK) Project License (PPL 30/2678) obtained after review by the University of Oxford Animal Care and Ethical Review committee licensed all procedures. The monkeys were socially housed together in same sex groups of between two and six monkeys. The housing and husbandry were in compliance with the guidelines of the European Directive (2010/63/EU) for the care and use of laboratory animals. All neurosurgeries were performed under sevoflurane anaesthesia, with appropriate peri-operative medications as advised by our experienced veterinarian, and every effort was made to minimize pain, distress or lasting harm.

Reviewing Editor

  1. Joshua I Gold, University of Pennsylvania, United States

Publication history

  1. Received: December 6, 2015
  2. Accepted: May 1, 2016
  3. Accepted Manuscript published: May 2, 2016 (version 1)
  4. Version of Record published: May 31, 2016 (version 2)

Copyright

© 2016, Chakraborty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,387
    Page views
  • 547
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Lorenz Deserno et al.
    Research Article Updated

    Dopamine is implicated in representing model-free (MF) reward prediction errors a as well as influencing model-based (MB) credit assignment and choice. Putative cooperative interactions between MB and MF systems include a guidance of MF credit assignment by MB inference. Here, we used a double-blind, placebo-controlled, within-subjects design to test an hypothesis that enhancing dopamine levels boosts the guidance of MF credit assignment by MB inference. In line with this, we found that levodopa enhanced guidance of MF credit assignment by MB inference, without impacting MF and MB influences directly. This drug effect correlated negatively with a dopamine-dependent change in purely MB credit assignment, possibly reflecting a trade-off between these two MB components of behavioural control. Our findings of a dopamine boost in MB inference guidance of MF learning highlight a novel DA influence on MB-MF cooperative interactions.

    1. Developmental Biology
    2. Neuroscience
    Qiuling Li et al.
    Research Article Updated

    Although many genes are known to influence sleep, when and how they impact sleep-regulatory circuits remain ill-defined. Here, we show that insomniac (inc), a conserved adaptor for the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within the mushroom body (MB), a center for sensory integration, associative learning, and sleep regulation. In inc mutants, MB neurons are produced in excess, develop anatomical defects that impede circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and suggest that developmental perturbations of circuits that couple sensory inputs and sleep may underlie sleep dysfunction in neurodevelopmental disorders.