Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death

  1. Laura E Sanman
  2. Yu Qian
  3. Nicholas A Eisele
  4. Tessie M Ng
  5. Wouter A van der Linden
  6. Denise M Monack
  7. Eranthie Weerapana
  8. Matthew Bogyo  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Boston College, United States

Abstract

When innate immune cells such as macrophages are challenged with environmental stresses or infection by pathogens, they trigger the rapid assembly of multi-protein complexes called inflammasomes that are responsible for initiating pro-inflammatory responses and a form of cell death termed pyroptosis. We describe here the identification of an intracellular trigger of NLRP3-mediated inflammatory signaling, IL-1β production and pyroptosis in primed murine bone marrow-derived macrophages that is mediated by disruption of glycolytic flux. This signal results from a drop of NADH levels and induction of mitochondrial ROS production and can be rescued by addition of products that restore NADH production. This signal is also important for host cell response to the intracellular pathogen Salmonella typhimurium, which can disrupt metabolism by uptake of host cell glucose. These results reveal an important inflammatory signaling network used by immune cells to sense metabolic dysfunction or infection by intracellular pathogens.

Article and author information

Author details

  1. Laura E Sanman

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yu Qian

    Department of Chemistry, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicholas A Eisele

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tessie M Ng

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wouter A van der Linden

    Department of Pathology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Denise M Monack

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Eranthie Weerapana

    Department of Chemistry, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthew Bogyo

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    mbogyo@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This work was approved under ABP protocol 1331 (Entitled Chemical probes to study host responses to bacterial pathogens) and APLAC protocol 18026. Primary cells were isolated from mouse bone marrow following strict accordance with the NIH guide for the care and use of laboratory animals. These protocols were reviewed and approved by the Environmental Health and Safety Department of Stanford University and the Institutional Animal Care and Use Committee of Stanford University, respectively.

Reviewing Editor

  1. Benjamin F Cravatt, The Scripps Research Institute, United States

Publication history

  1. Received: December 9, 2015
  2. Accepted: March 23, 2016
  3. Accepted Manuscript published: March 24, 2016 (version 1)
  4. Version of Record published: April 25, 2016 (version 2)

Copyright

© 2016, Sanman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,484
    Page views
  • 1,502
    Downloads
  • 111
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura E Sanman
  2. Yu Qian
  3. Nicholas A Eisele
  4. Tessie M Ng
  5. Wouter A van der Linden
  6. Denise M Monack
  7. Eranthie Weerapana
  8. Matthew Bogyo
(2016)
Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death
eLife 5:e13663.
https://doi.org/10.7554/eLife.13663
  1. Further reading

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Allison R Wagner, Chi G Weindel ... Kristin L Patrick
    Research Article Updated

    To mount a protective response to infection while preventing hyperinflammation, gene expression in innate immune cells must be tightly regulated. Despite the importance of pre-mRNA splicing in shaping the proteome, its role in balancing immune outcomes remains understudied. Transcriptomic analysis of murine macrophage cell lines identified Serine/Arginine Rich Splicing factor 6 (SRSF6) as a gatekeeper of mitochondrial homeostasis. SRSF6-dependent orchestration of mitochondrial health is directed in large part by alternative splicing of the pro-apoptosis pore-forming protein BAX. Loss of SRSF6 promotes accumulation of BAX-κ, a variant that sensitizes macrophages to undergo cell death and triggers upregulation of interferon stimulated genes through cGAS sensing of cytosolic mitochondrial DNA. Upon pathogen sensing, macrophages regulate SRSF6 expression to control the liberation of immunogenic mtDNA and adjust the threshold for entry into programmed cell death. This work defines BAX alternative splicing by SRSF6 as a critical node not only in mitochondrial homeostasis but also in the macrophage’s response to pathogens.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Harry Kane, Nelson M LaMarche ... Lydia Lynch
    Research Article

    Innate T cells, including CD1d-restricted invariant natural killer T (iNKT) cells, are characterized by their rapid activation in response to non-peptide antigens, such as lipids. While the transcriptional profiles of naive, effector and memory adaptive T cells have been well studied, less is known about transcriptional regulation of different iNKT cell activation states. Here, using single cell RNA-sequencing, we performed longitudinal profiling of activated murine iNKT cells, generating a transcriptomic atlas of iNKT cell activation states. We found that transcriptional signatures of activation are highly conserved among heterogeneous iNKT cell populations, including NKT1, NKT2 and NKT17 subsets, and human iNKT cells. Strikingly, we found that regulatory iNKT cells, such as adipose iNKT cells, undergo blunted activation, and display constitutive enrichment of memory-like cMAF+ and KLRG1+ populations. Moreover, we identify a conserved cMAF-associated transcriptional network among NKT10 cells, providing novel insights into the biology of regulatory and antigen experienced iNKT cells.