Functional Synergy between the Munc13 C-terminal C1 and C2 domains

  1. Xiaoxia Liu
  2. Alpay Burak Seven
  3. Marcial Camacho
  4. Vicotoria Esser
  5. Junjie Xu
  6. Thorsten Trimbuch
  7. Bradley Quade
  8. Lijing Su
  9. Cong Ma
  10. Christian Rosenmund
  11. Josep Rizo  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Charité-Universitätsmedizin Berlin, Germany
  3. Huazhong University of Science and Technology, China

Abstract

Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca2+-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a 'primed' state that does not fuse but is ready for fast fusion upon Ca2+ influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion.

Article and author information

Author details

  1. Xiaoxia Liu

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Alpay Burak Seven

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Marcial Camacho

    Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  4. Vicotoria Esser

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Junjie Xu

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Thorsten Trimbuch

    Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  7. Bradley Quade

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  8. Lijing Su

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  9. Cong Ma

    Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    No competing interests declared.
  10. Christian Rosenmund

    Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    Christian Rosenmund, Reviewing editor, eLife.
  11. Josep Rizo

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Jose.Rizo-Rey@UTSouthwestern.edu
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: Animal welfare committees of Charité Medical University and the Berlin state government Agency for Health and Social Services approved all protocols for animal maintenance and experiments (license no. T 0220/09).

Copyright

© 2016, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,284
    views
  • 785
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoxia Liu
  2. Alpay Burak Seven
  3. Marcial Camacho
  4. Vicotoria Esser
  5. Junjie Xu
  6. Thorsten Trimbuch
  7. Bradley Quade
  8. Lijing Su
  9. Cong Ma
  10. Christian Rosenmund
  11. Josep Rizo
(2016)
Functional Synergy between the Munc13 C-terminal C1 and C2 domains
eLife 5:e13696.
https://doi.org/10.7554/eLife.13696

Share this article

https://doi.org/10.7554/eLife.13696

Further reading

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.