Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system

  1. Abhishek Kulkarni
  2. Deniz Ertekin
  3. Chi-Hon Lee
  4. Thomas Hummel  Is a corresponding author
  1. University of Vienna, Austria
  2. Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States

Abstract

The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

Article and author information

Author details

  1. Abhishek Kulkarni

    Department of Neurobiology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Deniz Ertekin

    Department of Neurobiology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Chi-Hon Lee

    Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Hummel

    Department of Neurobiology, University of Vienna, Vienna, Austria
    For correspondence
    thomas.hummel@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Kulkarni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,221
    views
  • 524
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Abhishek Kulkarni
  2. Deniz Ertekin
  3. Chi-Hon Lee
  4. Thomas Hummel
(2016)
Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system
eLife 5:e13715.
https://doi.org/10.7554/eLife.13715

Share this article

https://doi.org/10.7554/eLife.13715

Further reading

    1. Developmental Biology
    Yanlin Hou, Zhengwen Nie ... Hans R Scholer
    Research Article

    During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.

    1. Developmental Biology
    2. Neuroscience
    Maria I Lazaro-Pena, Carlos A Diaz-Balzac
    Insight

    The ligand Netrin mediates axon guidance through a combination of haptotaxis over short distances and chemotaxis over longer distances.