The cell proliferation antigen Ki-67 organises heterochromatin

  1. Michal Sobecki
  2. Karim Mrouj
  3. Alain Camasses
  4. Nikolaos Parisis
  5. Emilien Nicolas
  6. David Llères
  7. François Gerbe
  8. Susana Prieto
  9. Liliana Krasinska
  10. Alexandre David
  11. Manuel Eguren
  12. Marie-Christine Birling
  13. Serge Urbach
  14. Sonia Hem
  15. Jérôme Déjardin
  16. Marcos Malumbres
  17. Philippe Jay
  18. Vjekoslav Dulic
  19. Denis LJ Lafontaine
  20. Robert P Feil
  21. Daniel Fisher  Is a corresponding author
  1. Institute for Integrative Biology of the Cell, Université Paris Sud, France
  2. Montpellier Institute of Molecular Genetics, France
  3. Université Libre de Bruxelles, Belgium
  4. University of Montpellier, France
  5. Spanish National Cancer Research Centre, Spain
  6. Mouse Clinical Institute, France
  7. SupAgro, France

Abstract

Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression.

Article and author information

Author details

  1. Michal Sobecki

    Department of Genome Biology, Institute for Integrative Biology of the Cell, Université Paris Sud, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Karim Mrouj

    Montpellier Institute of Molecular Genetics, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alain Camasses

    Montpellier Institute of Molecular Genetics, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Nikolaos Parisis

    Montpellier Institute of Molecular Genetics, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Emilien Nicolas

    RNA Molecular Biology, Fonds de la Recherche Nationale, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. David Llères

    Montpellier Institute of Molecular Genetics, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. François Gerbe

    Faculty of Sciences, University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Susana Prieto

    Montpellier Institute of Molecular Genetics, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Liliana Krasinska

    Montpellier Institute of Molecular Genetics, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Alexandre David

    Faculty of Sciences, University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Manuel Eguren

    Spanish National Cancer Research Centre, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Marie-Christine Birling

    Mouse Clinical Institute, Illkirch-Graffenstaden, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Serge Urbach

    Faculty of Sciences, University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Sonia Hem

    Mass Spectrometry Platform MSPP, SupAgro, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Jérôme Déjardin

    Faculty of Sciences, University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Marcos Malumbres

    Spanish National Cancer Research Centre, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  17. Philippe Jay

    Faculty of Sciences, University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  18. Vjekoslav Dulic

    Montpellier Institute of Molecular Genetics, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  19. Denis LJ Lafontaine

    RNA Molecular Biology, Fonds de la Recherche Nationale, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  20. Robert P Feil

    Montpellier Institute of Molecular Genetics, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  21. Daniel Fisher

    Montpellier Institute of Molecular Genetics, Montpellier, France
    For correspondence
    daniel.fisher@igmm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were performed in accordance with international ethics standards and were subjected to approval by the Animal Experimentation Ethics Committee of Languedoc Roussillon and the Ministry for Higher Education and Research

Copyright

© 2016, Sobecki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 16,058
    views
  • 2,113
    downloads
  • 257
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michal Sobecki
  2. Karim Mrouj
  3. Alain Camasses
  4. Nikolaos Parisis
  5. Emilien Nicolas
  6. David Llères
  7. François Gerbe
  8. Susana Prieto
  9. Liliana Krasinska
  10. Alexandre David
  11. Manuel Eguren
  12. Marie-Christine Birling
  13. Serge Urbach
  14. Sonia Hem
  15. Jérôme Déjardin
  16. Marcos Malumbres
  17. Philippe Jay
  18. Vjekoslav Dulic
  19. Denis LJ Lafontaine
  20. Robert P Feil
  21. Daniel Fisher
(2016)
The cell proliferation antigen Ki-67 organises heterochromatin
eLife 5:e13722.
https://doi.org/10.7554/eLife.13722

Share this article

https://doi.org/10.7554/eLife.13722

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.