1. Computational and Systems Biology
  2. Neuroscience
Download icon

Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system

Research Article
  • Cited 23
  • Views 1,390
  • Annotations
Cite this article as: eLife 2016;5:e13969 doi: 10.7554/eLife.13969

Abstract

Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space.

Article and author information

Author details

  1. Nicholas E Bush

    Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher L Schroeder

    Department of Biomedical Engineering, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer A Hobbs

    Department of Physics and Astronomy, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne ET Yang

    Department of Mechanical Engineering, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lucie A Huet

    Department of Mechanical Engineering, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sara A Solla

    Department of Physics and Astronomy, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mitra JZ Hartmann

    Department of Biomedical Engineering, Northwestern University, Evanston, United States
    For correspondence
    hartmann@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All procedures involving animals were approved in advance by the Northwestern University Animal Care and Use Committee protocols #2012-1776 and #2015-1575.

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Publication history

  1. Received: December 22, 2015
  2. Accepted: June 26, 2016
  3. Accepted Manuscript published: June 27, 2016 (version 1)
  4. Version of Record published: August 25, 2016 (version 2)

Copyright

© 2016, Bush et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,390
    Page views
  • 347
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Michael Sheinman et al.
    Research Article

    Horizontal Gene Transfer (HGT) is an essential force in microbial evolution. Despite detailed studies on a variety of systems, a global picture of HGT in the microbial world is still missing. Here, we exploit that HGT creates long identical DNA sequences in the genomes of distant species, which can be found efficiently using alignment-free methods. Our pairwise analysis of 93 481 bacterial genomes identified 138 273 HGT events. We developed a model to explain their statistical properties as well as estimate the transfer rate between pairs of taxa. This reveals that long-distance HGT is frequent: our results indicate that HGT between species from different phyla has occurred in at least 8% of the species. Finally, our results confirm that the function of sequences strongly impacts their transfer rate, which varies by more than 3 orders of magnitude between different functional categories. Overall, we provide a comprehensive view of HGT, illuminating a fundamental process driving bacterial evolution.

    1. Cell Biology
    2. Computational and Systems Biology
    Ina Lantzsch et al.
    Research Article

    The female meiotic spindles of most animals are acentrosomal and undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of acentrosomal spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic C. elegans spindles undergoing the transition from metaphase to anaphase. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over on second time scales. The results show that the transition from metaphase to anaphase correlates with an increase in the number of microtubules and a decrease in their average length. Detailed analysis of the tomographic data revealed that the length of microtubules changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for those microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the observed large-scale reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those that are closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe alone. In anaphase, even microtubules close to the chromosomes show no signs of cutting. This suggests that the most prominent drivers of spindle rearrangements from metaphase to anaphase are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on the presence of katanin.