Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system

Abstract

Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space.

Article and author information

Author details

  1. Nicholas E Bush

    Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher L Schroeder

    Department of Biomedical Engineering, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer A Hobbs

    Department of Physics and Astronomy, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne ET Yang

    Department of Mechanical Engineering, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lucie A Huet

    Department of Mechanical Engineering, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sara A Solla

    Department of Physics and Astronomy, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mitra JZ Hartmann

    Department of Biomedical Engineering, Northwestern University, Evanston, United States
    For correspondence
    hartmann@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Ethics

Animal experimentation: All procedures involving animals were approved in advance by the Northwestern University Animal Care and Use Committee protocols #2012-1776 and #2015-1575.

Version history

  1. Received: December 22, 2015
  2. Accepted: June 26, 2016
  3. Accepted Manuscript published: June 27, 2016 (version 1)
  4. Version of Record published: August 25, 2016 (version 2)

Copyright

© 2016, Bush et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,572
    views
  • 362
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas E Bush
  2. Christopher L Schroeder
  3. Jennifer A Hobbs
  4. Anne ET Yang
  5. Lucie A Huet
  6. Sara A Solla
  7. Mitra JZ Hartmann
(2016)
Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system
eLife 5:e13969.
https://doi.org/10.7554/eLife.13969

Share this article

https://doi.org/10.7554/eLife.13969

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.