1. Neuroscience
Download icon

Direct neural pathways convey distinct visual information to Drosophila mushroom bodies

  1. Katrin Vogt
  2. Yoshinori Aso
  3. Toshihide Hige
  4. Stephan Knapek
  5. Toshiharu Ichinose
  6. Anja B Friedrich
  7. Glenn C Turner
  8. Gerald M Rubin
  9. Hiromu Tanimoto  Is a corresponding author
  1. Harvard University, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. Max-Planck Institut für Neurobiologie, Germany
Research Advance
  • Cited 65
  • Views 4,091
  • Annotations
Cite this article as: eLife 2016;5:e14009 doi: 10.7554/eLife.14009

Abstract

Previously, we identified that visual and olfactory associative memories of Drosophila share the mushroom body (MB) circuits (Vogt et al. 2014). Despite well-characterized odor representations in the Drosophila MB, the MB circuit for visual information is totally unknown. Here we show that a small subset of MB Kenyon cells (KCs) selectively responds to visual but not olfactory stimulation. The dendrites of these atypical KCs form a ventral accessory calyx (vAC), distinct from the main calyx that receives olfactory input. We identified two types of visual projection neurons (VPNs) directly connecting the optic lobes and the vAC. Strikingly, these VPNs are differentially required for visual memories of color and brightness. The segregation of visual and olfactory domains in the MB allows independent processing of distinct sensory memories and may be a conserved form of sensory representations among insects.

Article and author information

Author details

  1. Katrin Vogt

    Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yoshinori Aso

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Toshihide Hige

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephan Knapek

    Max-Planck Institut für Neurobiologie, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Toshiharu Ichinose

    Max-Planck Institut für Neurobiologie, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Anja B Friedrich

    Max-Planck Institut für Neurobiologie, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Glenn C Turner

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gerald M Rubin

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hiromu Tanimoto

    Max-Planck Institut für Neurobiologie, Martinsried, Germany
    For correspondence
    hiromut@m.tohoku.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Publication history

  1. Received: December 24, 2015
  2. Accepted: April 14, 2016
  3. Accepted Manuscript published: April 15, 2016 (version 1)
  4. Version of Record published: May 27, 2016 (version 2)

Copyright

© 2016, Vogt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,091
    Page views
  • 1,176
    Downloads
  • 65
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Baruch Haimson et al.
    Research Article Updated

    Peripheral and intraspinal feedback is required to shape and update the output of spinal networks that execute motor behavior. We report that lumbar dI2 spinal interneurons in chicks receive synaptic input from afferents and premotor neurons. These interneurons innervate contralateral premotor networks in the lumbar and brachial spinal cord, and their ascending projections innervate the cerebellum. These findings suggest that dI2 neurons function as interneurons in local lumbar circuits, are involved in lumbo-brachial coupling, and that part of them deliver peripheral and intraspinal feedback to the cerebellum. Silencing of dI2 neurons leads to destabilized stepping in posthatching day 8 hatchlings, with occasional collapses, variable step profiles, and a wide-base walking gait, suggesting that dI2 neurons may contribute to the stabilization of the bipedal gait.

    1. Cell Biology
    2. Neuroscience
    Rene Solano Fonseca et al.
    Research Article Updated

    Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in C. elegans to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons. Reducing cytochrome C oxidase function elevates mitochondrial-derived reactive oxygen species, which signal through the cytosolic hypoxia inducing transcription factor, Hif1a, to promote hyperphosphorylation and inactivation of the pyruvate dehydrogenase, PDHE1α. This critical enzyme initiates the Warburg shunt, which drives energetic reallocation from mitochondrial respiration to astrocyte-mediated glycolysis in a neuroprotective manner. These studies demonstrate a conserved process in which glycolytic preconditioning suppresses Parkinson-like hypersensitivity of dopaminergic neurons to trauma-induced degeneration via redox signaling and the Warburg effect.