1. Cell Biology
  2. Computational and Systems Biology
Download icon

TissueMiner: a multiscale analysis toolkit to quantify how cellular processes create tissue dynamics

  1. Raphaël Etournay
  2. Matthias Merkel
  3. Marko Popović
  4. Holger Brandl
  5. Natalie A Dye
  6. Benoît Aigouy
  7. Guillaume Salbreux
  8. Suzanne Eaton
  9. Frank Jülicher  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Max Planck Institute for the Physics of Complex Systems, Germany
  3. Institut de Biologie du Développement de Marseille, France
Tools and Resources
  • Cited 45
  • Views 5,685
  • Annotations
Cite this article as: eLife 2016;5:e14334 doi: 10.7554/eLife.14334

Abstract

Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods for relating tissue shape changes to cell dynamics have not yet been widely applied by biologists because of their technical complexity. We therefore developed a database format that stores cellular connectivity and geometry information of deforming epithelial tissues, and computational tools to interrogate it and perform multi-scale analysis of morphogenesis. We provide tutorials for this computational framework, called TissueMiner, and demonstrate its capabilities by comparing cell and tissue dynamics in vein and inter-vein subregions of the Drosophila pupal wing. These analyses reveal an unexpected role for convergent extension in shaping wing veins.

Article and author information

Author details

  1. Raphaël Etournay

    Division of cell polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  2. Matthias Merkel

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Marko Popović

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  4. Holger Brandl

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  5. Natalie A Dye

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  6. Benoît Aigouy

    Institut de Biologie du Développement de Marseille, Marseille, France
    Competing interests
    No competing interests declared.
  7. Guillaume Salbreux

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  8. Suzanne Eaton

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    Suzanne Eaton, Reviewing editor, eLife.
  9. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    For correspondence
    julicher@pks.mpg.de
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.

Reviewing Editor

  1. W James Nelson, Stanford University, United States

Publication history

  1. Received: January 12, 2016
  2. Accepted: May 25, 2016
  3. Accepted Manuscript published: May 26, 2016 (version 1)
  4. Accepted Manuscript updated: May 27, 2016 (version 2)
  5. Version of Record published: July 15, 2016 (version 3)

Copyright

© 2016, Etournay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,685
    Page views
  • 1,095
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Agata Szuba et al.
    Research Article

    Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12 to 18 nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4 nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.

    1. Cell Biology
    Madhuja Samaddar et al.
    Research Article

    Somatic cells age and die, but the germ-cell lineage is immortal. In Caenorhabditis elegans, germline immortality involves proteostasis renewal at the beginning of each new generation, when oocyte maturation signals from sperm trigger the clearance of carbonylated proteins and protein aggregates. Here, we explore the cell biology of this proteostasis renewal in the context of a whole-genome RNAi screen. Oocyte maturation signals are known to trigger protein-aggregate removal via lysosome acidification. Our findings suggest that lysosomes are acidified as a consequence of changes in endoplasmic reticulum activity that permit assembly of the lysosomal V-ATPase, which in turn allows lysosomes to clear the aggregates via microautophagy. We define two functions for mitochondria, both of which appear to be independent of ATP generation. Many genes from the screen also regulate lysosome acidification and age-dependent protein aggregation in the soma, suggesting a fundamental mechanistic link between proteostasis renewal in the germline and somatic longevity.