PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells

  1. María Inés Pérez Millán
  2. Michelle L Brinkmeier
  3. Amanda H Mortensen
  4. Sally A Camper  Is a corresponding author
  1. University of Michigan, United States
  2. University of Michigan-Ann Arbor, United States

Abstract

Mutations in PROP1 are the most common cause of hypopituitarism in humans; therefore, unraveling its mechanism of action is highly relevant from a therapeutic perspective. Our current understanding of the role of PROP1 in the pituitary gland is limited to the repression and activation of the pituitary transcription factor genes Hesx1 and Pou1f1, respectively. To elucidate the comprehensive PROP1-dependent gene regulatory network, we conducted genome wide analysis of PROP1 DNA binding and effects on gene expression in mutant mice, mouse isolated stem cells and engineered mouse cell lines. We determined that PROP1 is essential for stimulating stem cells to undergo an epithelial to mesenchymal transition-like process necessary for cell migration and differentiation. Genomic profiling reveals that PROP1 binds to genes expressed in epithelial cells like Claudin 23, and to EMT inducer genes like Zeb2, Notch2 and Gli2. Zeb2 activation appears to be a key step in the EMT process. Our findings identify PROP1 as a central transcriptional component of pituitary stem cell differentiation.

Article and author information

Author details

  1. María Inés Pérez Millán

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michelle L Brinkmeier

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amanda H Mortensen

    Department of Human Genetics, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sally A Camper

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    For correspondence
    scamper@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Janet Rossant, University of Toronto, Canada

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol of the University of Michigan. The protocol was approved by the University Committee on Use and Care of Animals (UCUCA) of the University of Michigan (PRO00004640).

Version history

  1. Received: January 16, 2016
  2. Accepted: June 24, 2016
  3. Accepted Manuscript published: June 28, 2016 (version 1)
  4. Version of Record published: July 11, 2016 (version 2)

Copyright

© 2016, Pérez Millán et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,142
    views
  • 487
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. María Inés Pérez Millán
  2. Michelle L Brinkmeier
  3. Amanda H Mortensen
  4. Sally A Camper
(2016)
PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells
eLife 5:e14470.
https://doi.org/10.7554/eLife.14470

Share this article

https://doi.org/10.7554/eLife.14470

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cell Biology
    Zhongyun Xie, Yongping Chai ... Wei Li
    Research Article

    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.