A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging

  1. Nicholas James Sofroniew
  2. Daniel Flickinger
  3. Jonathon King
  4. Karel Svoboda  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Vidrio Technologies, United States

Abstract

Imaging is used to map activity across populations of neurons. Microscopes with cellular resolution have small (< 1 millimeter) fields of view and cannot simultaneously image activity distributed across multiple brain areas. Typical large field of view microscopes do not resolve single cells, especially in the axial dimension. We developed a 2-photon random access mesoscope (2p-RAM) that allows high-resolution imaging anywhere within a volume spanning multiple brain areas (Φ 5 mm x 1 mm cylinder). 2p-RAM resolution is near diffraction limited (lateral, 0.66 μm, axial 4.09 μm at the center; excitation wavelength = 970 nm; numerical aperture = 0.6) over a large range of excitation wavelengths. A fast three-dimensional scanning system allows efficient sampling of neural activity in arbitrary regions of interest across the entire imaging volume. We illustrate the use of the 2p-RAM by imaging neural activity in multiple, non-contiguous brain areas in transgenic mice expressing protein calcium sensors.

Article and author information

Author details

  1. Nicholas James Sofroniew

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  2. Daniel Flickinger

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Jonathon King

    Vidrio Technologies, Ashburn, United States
    Competing interests
    No competing interests declared.
  4. Karel Svoboda

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    svobodak@janelia.hhmi.org
    Competing interests
    Karel Svoboda, Reviewing editor, eLife.

Reviewing Editor

  1. Fred Rieke, Howard Hughes Medical Institute, University of Washington, United States

Ethics

Animal experimentation: All procedures were in accordance with protocols approved by the Janelia Research Campus Institutional Animal Care and Use Committee. IACUC 14-115.

Version history

  1. Received: January 16, 2016
  2. Accepted: June 13, 2016
  3. Accepted Manuscript published: June 14, 2016 (version 1)
  4. Version of Record published: July 19, 2016 (version 2)

Copyright

© 2016, Sofroniew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 26,711
    Page views
  • 3,992
    Downloads
  • 378
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas James Sofroniew
  2. Daniel Flickinger
  3. Jonathon King
  4. Karel Svoboda
(2016)
A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging
eLife 5:e14472.
https://doi.org/10.7554/eLife.14472

Share this article

https://doi.org/10.7554/eLife.14472

Further reading

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Tien M Phan, Young C Kim ... Jeetain Mittal
    Research Article

    The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.