Spontaneous mutations and the origin and maintenance of quantitative genetic variation

  1. Wen Huang
  2. Richard F Lyman
  3. Rachel A Lyman
  4. Mary Anna Carbone
  5. Susan T Harbison
  6. Michael M Magwire
  7. Trudy FC Mackay  Is a corresponding author
  1. North Carolina State University, United States
  2. Washington University in St. Louis, United States
  3. National Heart Lung and Blood Institute, United States
  4. Syngenta, United States

Abstract

Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation.

Article and author information

Author details

  1. Wen Huang

    Program in Genetics, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Richard F Lyman

    Program in Genetics, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel A Lyman

    Department of Biology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mary Anna Carbone

    Program in Genetics, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Susan T Harbison

    Laboratory of Systems Genetics, National Heart Lung and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael M Magwire

    Syngenta, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Trudy FC Mackay

    Program in Genetics, North Carolina State University, Raleigh, United States
    For correspondence
    trudy_mackay@ncsu.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Molly Przeworski, Columbia University, United States

Version history

  1. Received: January 21, 2016
  2. Accepted: May 21, 2016
  3. Accepted Manuscript published: May 23, 2016 (version 1)
  4. Version of Record published: June 16, 2016 (version 2)
  5. Version of Record updated: October 19, 2016 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 10,603
    views
  • 724
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wen Huang
  2. Richard F Lyman
  3. Rachel A Lyman
  4. Mary Anna Carbone
  5. Susan T Harbison
  6. Michael M Magwire
  7. Trudy FC Mackay
(2016)
Spontaneous mutations and the origin and maintenance of quantitative genetic variation
eLife 5:e14625.
https://doi.org/10.7554/eLife.14625

Share this article

https://doi.org/10.7554/eLife.14625

Further reading

    1. Genetics and Genomics
    Tiechao Ruan, Ruixi Zhou ... Ying Shen
    Research Article

    IQ motif-containing proteins can be recognized by calmodulin (CaM) and are essential for many biological processes. However, the role of IQ motif-containing proteins in spermatogenesis is largely unknown. In this study, we identified a loss-of-function mutation in the novel gene IQ motif-containing H (IQCH) in a Chinese family with male infertility characterized by a cracked flagellar axoneme and abnormal mitochondrial structure. To verify the function of IQCH, Iqch knockout (KO) mice were generated via CRISPR-Cas9 technology. As expected, the Iqch KO male mice exhibited impaired fertility, which was related to deficient acrosome activity and abnormal structures of the axoneme and mitochondria, mirroring the patient phenotypes. Mechanistically, IQCH can bind to CaM and subsequently regulate the expression of RNA-binding proteins (especially HNRPAB), which are indispensable for spermatogenesis. Overall, this study revealed the function of IQCH, expanded the role of IQ motif-containing proteins in reproductive processes, and provided important guidance for genetic counseling and genetic diagnosis of male infertility.