1. Structural Biology and Molecular Biophysics
Download icon

Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies

  1. Lars-Anders Carlson
  2. Yun Bai
  3. Sarah C Keane
  4. Jennifer A Doudna
  5. James H Hurley  Is a corresponding author
  1. University of California, Berkeley, United States
  2. ShanghaiTech University, China
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
Research Article
  • Cited 21
  • Views 2,233
  • Annotations
Cite this article as: eLife 2016;5:e14663 doi: 10.7554/eLife.14663

Abstract

HIV-1 Gag selects and packages a dimeric, unspliced viral RNA in the context of a large excess of cytosolic human RNAs. As Gag assembles on the plasma membrane, the HIV-1 genome is enriched relative to cellular RNAs by an unknown mechanism. We used a minimal system consisting of purified RNAs, recombinant HIV-1 Gag and giant unilamellar vesicles to recapitulate the selective packaging of the 5' untranslated region of the HIV-1 genome in the presence of excess competitor RNA. Mutations in the CA-CTD domain of Gag which subtly affect the self-assembly of Gag abrogated RNA selectivity. We further found that tRNA suppresses Gag membrane binding less when Gag has bound viral RNA. The ability of HIV-1 Gag to selectively package its RNA genome and its self-assembly on membranes are thus interdependent on one another.

Article and author information

Author details

  1. Lars-Anders Carlson

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yun Bai

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah C Keane

    Howard Hughes Medical Institute, University of California, Berkeley, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer A Doudna

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James H Hurley

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jimhurley@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Wesley I Sundquist, University of Utah, United States

Publication history

  1. Received: January 23, 2016
  2. Accepted: June 24, 2016
  3. Accepted Manuscript published: June 25, 2016 (version 1)
  4. Version of Record published: July 15, 2016 (version 2)

Copyright

© 2016, Carlson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,233
    Page views
  • 562
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Marc Fahrner, Christoph Romanin
    Insight

    Harnessing single-molecule FRET illuminates the structural changes necessary for a protein to fine-tune the influx of calcium when reserves inside a cell run low.

    1. Structural Biology and Molecular Biophysics
    Márton A Simon, László Csanády
    Research Article

    The phosphorylation-activated anion channel CFTR is gated by an ATP hydrolysis cycle at its two cytosolic nucleotide binding domains, and is essential for epithelial salt-water transport. A large number of CFTR mutations cause cystic fibrosis. Since recent breakthrough in targeted pharmacotherapy, CFTR mutants with impaired gating are candidates for stimulation by potentiator drugs. Thus, understanding the molecular pathology of individual mutations has become important. The relatively common R117H mutation affects an extracellular loop, but nevertheless causes a strong gating defect. Here we identify a hydrogen bond between the side chain of arginine 117 and the backbone carbonyl group of glutamate 1124 in the cryo-electronmicroscopic structure of phosphorylated, ATP-bound CFTR. We address the functional relevance of that interaction for CFTR gating using macroscopic and microscopic inside-out patch-clamp recordings. Employing thermodynamic double-mutant cycles, we systematically track gating-state dependent changes in the strength of the R117-E1124 interaction. We find that the H-bond is formed only in the open state, but neither in the short-lived "flickery" nor in the long-lived 'interburst' closed state. Loss of this H-bond explains the strong gating phenotype of the R117H mutant, including robustly shortened burst durations and strongly reduced intraburst open probability. The findings may help targeted potentiator design.