Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies

  1. Lars-Anders Carlson
  2. Yun Bai
  3. Sarah C Keane
  4. Jennifer A Doudna
  5. James H Hurley  Is a corresponding author
  1. University of California, Berkeley, United States
  2. ShanghaiTech University, China
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

HIV-1 Gag selects and packages a dimeric, unspliced viral RNA in the context of a large excess of cytosolic human RNAs. As Gag assembles on the plasma membrane, the HIV-1 genome is enriched relative to cellular RNAs by an unknown mechanism. We used a minimal system consisting of purified RNAs, recombinant HIV-1 Gag and giant unilamellar vesicles to recapitulate the selective packaging of the 5' untranslated region of the HIV-1 genome in the presence of excess competitor RNA. Mutations in the CA-CTD domain of Gag which subtly affect the self-assembly of Gag abrogated RNA selectivity. We further found that tRNA suppresses Gag membrane binding less when Gag has bound viral RNA. The ability of HIV-1 Gag to selectively package its RNA genome and its self-assembly on membranes are thus interdependent on one another.

Article and author information

Author details

  1. Lars-Anders Carlson

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yun Bai

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah C Keane

    Howard Hughes Medical Institute, University of California, Berkeley, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer A Doudna

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James H Hurley

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jimhurley@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Carlson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,727
    views
  • 649
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lars-Anders Carlson
  2. Yun Bai
  3. Sarah C Keane
  4. Jennifer A Doudna
  5. James H Hurley
(2016)
Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies
eLife 5:e14663.
https://doi.org/10.7554/eLife.14663

Share this article

https://doi.org/10.7554/eLife.14663

Further reading

    1. Structural Biology and Molecular Biophysics
    Andrew D Huber, Taosheng Chen
    Insight

    Complementary structural biology approaches reveal how an agonist and a covalent inhibitor simultaneously bind to a nuclear receptor.

    1. Structural Biology and Molecular Biophysics
    Lirong Zheng, Bingxin Zhou ... Liang Hong
    Short Report

    The protein dynamical transition at ~200 K, where the biomolecule transforms from a harmonic, non-functional form to an anharmonic, functional state, has been thought to be slaved to the thermal activation of dynamics in its surface hydration water. Here, by selectively probing the dynamics of protein and hydration water using elastic neutron scattering and isotopic labeling, we found that the onset of anharmonicity in the two components around 200 K is decoupled. The one in protein is an intrinsic transition, whose characteristic temperature is independent of the instrumental resolution time, but varies with the biomolecular structure and the amount of hydration, while the one of water is merely a resolution effect.